Financial Structure and Financial Crisis

Franklin Allen

June 2000

This paper analyzes the Asian crisis in the context of past and present financial crises to provide a model of asset price bubbles and ensuing crisis in developing and other economies. It is argued that financial structure matters for economic growth but is not that important for preventing financial crises. Moreover, financial crises do not seem to be primarily caused by country specific factors. A bank-based financial system has some advantages for countries trying to develop an economy based on manufacturing in traditional industries. For economies where the main industries are knowledge based, however, equity and debt markets may be more advantageous.
ADB Institute
Working Paper Series
No. 10

June 2000

Financial Structure and
Financial Crisis

Franklin Allen
ABOUT THE AUTHOR

Franklin Allen is Nippon Life Professor of Finance and Economics at the Wharton School of the University of Pennsylvania. He has been on the faculty there since 1980. Prior to this he obtained his doctorate from Oxford University. During his time at Wharton he has been the Vice Dean for the Doctoral Division and was Executive Editor for the Review of Financial Studies, one of the leading academic journals in finance. He is currently President of the American Finance Association. His research interests include corporate finance, asset pricing, financial crises and the comparison of financial systems.

This paper is part of the Institute's research project on financial markets and development paradigms. Additional copies of the paper are available free from the Asian Development Bank Institute, 8th Floor, Kasumigaseki Building, 3-2-5 Kasumigaseki, Chiyoda-ku, Tokyo 100-6008, Japan. Attention: Publications.

Copyright ©2000 Asian Development Bank Institute and the author. All rights reserved. Produced by ADBI Publishing.
PREFACE

The ADB Institute aims to explore the most appropriate development paradigms for Asia composed of well-balanced combinations of the roles of markets, institutions, and governments in the post-crisis period.

Under this broad research project on development paradigms, the ADB Institute Working Paper Series will contribute to disseminating works-in-progress as a building block of the project and will invite comments and questions.

I trust that this series will provoke constructive discussions among policymakers as well as researchers about where Asian economies should go from the last crisis and current recovery.

The conference version of this paper was presented on 26 May 2000 at the ADBI/Wharton seminar on Financial Structure for Sustainable Development in Post-Crisis Asia held at the Institute.

Masaru Yoshitomi
Dean
ADB Institute
ABSTRACT

Financial systems that are subject to market forces seem prone to periodic financial crises. Financial crises like those in South East Asia often follow what appear to be bubbles in asset prices. The financial crises recently suffered in this region were not primarily due to the country specific factors that are stressed in the conventional analysis. They are essentially similar to crises that have occurred, both historically and recently, in many other countries with rather different financial structures.

This paper describes a model of bubbles and ensuing financial crises which is consistent with events observed in South East Asia, Scandinavia and many other countries. If the bubble bursts and asset prices collapse a banking crisis can follow. This may spill over into the real economy and lead to a fall in output.

Policy should be directed at ensuring an asset price bubble does not occur by keeping credit growth at an appropriate level and avoiding uncertainty about future financial policy. However, if a bubble does occur and the inevitable collapse in asset prices leads to a banking crisis, swift intervention in the form of recapitalization of the banking system is required to eliminate the debt overhang problem.

It is argued that financial structure does matter for growth. For countries trying to develop an economy based on manufacturing in traditional industries, a bank-based system has some advantages. For economies where the main industries are knowledge based, equity and debt markets may have some advantages. Given the conclusion that financial structure is not that important for preventing financial crises the aim of long-run growth does not need to be compromised. However, the financial liberalization necessary for moves in structures and systems needs to be handled with great care and uncertainty needs to be minimized if problems of financial crisis are to be avoided.
# TABLE OF CONTENTS

- Preface iii
- Abstract iv
- Table of Contents v

1. Introduction 1

2. A Comparison of South East Asian and Other Crises 2

3. A Theory of Crises 4

4. Policy Issues 8

5. Financial Structure and Growth 10

6. Concluding Remarks 11

Appendix 13

Tables 16

References 17
Financial Structure and Financial Crisis

Franklin Allen

1. Introduction

For many years the economies of South East Asia were regarded as models for economic development. The four tigers, Hong Kong, China; Korea; Singapore and Taipei, China grew from low levels of income per head to among the highest in the world in a few decades. The newly industrializing economies of Indonesia, Malaysia and Thailand had also started to grow at an extremely rapid rate. The Philippines too has performed better in recent years. The success of these economies was documented in a 1993 World Bank report entitled The East Asian Miracle.

Unfortunately, in the latter half of 1997, with the exception of Taipei, China, financial crises struck these economies. Asset prices and exchange rates tumbled and the banking sectors were put under heavy strain. The financial crises spilled over into the real economies and severe recessions occurred. This experience raises two obvious questions:

• Why did the crises occur?
• What can be done to prevent them in the future?

The conventional analysis of these issues focuses on the particular features of the countries in South East Asia (see, for example, Agénor et al. (1999), Corsetti et al. (1998a, b), Krugman (1998) and McKinnon and Pill (1997, 1999)). Factors that are often cited as being important causes are the following:

• Explicit and implicit government and International Monetary Fund guarantees of banks.
• Ineffective regulation of the banking system.
• Corruption and nepotism in the banking industry.
• A monopolistic market structure such as the chaebols in Korea.

The implication of this analysis is that to prevent future crises these factors should be reversed. In short, the financial structure of these economies should be made to more closely resemble the financial structure of the U.S. economy. This would involve the following:

• Effective regulation and improved transparency of the banking system.
• Development of financial markets so that the reliance on the banking system is reduced.

It will be argued below that the financial crises suffered by South East Asia were not primarily due to the country specific factors that are stressed in the conventional analysis. Section 2 points out that they are essentially similar to crises that have occurred, both

---

1 Wharton School, University of Pennsylvania. The conference version of this paper was prepared for the ADBI/Wharton Seminar on Financial Structure for Sustainable Development in Post-Crisis Asia held on Friday, 26 May 2000 at the ADB Institute, Tokyo. I am grateful to Professor Shin-ichi Fukuda and other participants at the seminar for their helpful comments and suggestions.
historically and recently, in many other countries with rather different financial structures. This suggests that the problem of financial crises is a more general one.

Section 3 develops a theory of financial crises. This has two important features:

1. Creation of an asset price bubble through the interaction of an agency problem and lax and uncertain credit and monetary policies.
2. A debt overhang that causes a recession after the bubble has burst.

This analysis leads to a different conclusion compared to the conventional one on the relationship between financial structure and financial crisis. The implications are developed in Section 4. It is argued that the avoidance of lax and uncertain credit and monetary policies is the most important aspect of avoiding financial crises. Once a bubble has occurred and has burst, then what is required is a recapitalization of the banking system to eliminate the debt overhang problem.

Section 5 considers the relationship between financial structure and growth. One of the most costly aspects of the financial crises in South East Asia has been the reduction in growth. It is argued that financial structure does matter for growth. For countries trying to develop an economy based on manufacturing in traditional industries a bank-based system has some advantages. For economies where the main industries are knowledge based, equity and debt markets may have some advantages. Given the conclusion in Section 4 that financial structure is not that important for preventing financial crises the aim of long-run growth does not need to be compromised.

Finally, Section 6 contains concluding remarks.

2. A Comparison of South East Asian and Other Crises

Contrary to conventional financial theory, financial systems that are subject to market forces seem prone to periodic financial crises. In determining whether crises are idiosyncratic events or systemic, it is helpful to start by considering their history. Financial crises like those in South East Asia often follow what appear to be bubbles in asset prices. Historic examples of this type of crisis are the Dutch Tulipmania in the seventeenth century, the South Sea bubble in England and the Mississippi bubble in France at the start of the eighteenth century, and the Great Crash of 1929 in the United States.

Similar events occurred in Norway, Finland and Sweden in the 1980s (see Heiskanen (1993) and Drees and Pazarbasioglu (1995)). In Norway the ratio of bank loans to nominal GDP went from 40 percent in 1984 to 68 percent in 1988. Asset prices soared while investment and consumption also increased significantly. The collapse in oil prices in 1986 helped burst the bubble and asset prices fell sharply. It took some time before the full impact of this drop was felt by the banking system. In 1990 the most severe banking crisis and recession since the war started. In Finland an expansionary budget in 1987 resulted in massive credit expansion. The ratio of bank loans to nominal GDP increased from 55 percent in 1984 to 90 percent in 1990. Housing prices rose by a total of 68 percent in 1987 and 1988. In 1989 the central bank increased interest rates and imposed reserve requirements to moderate credit expansion. In 1990 and 1991 the economic situation was exacerbated by a fall in trade with the Soviet Union. Asset prices collapsed, banks had to be supported by the government and GDP shrank by 7 percent. In Sweden a steady credit expansion through the late 1980s led to a property boom. In the fall of 1990 credit was tightened and interest rates rose. In 1991 a number of banks had severe difficulties because of lending based on inflated
asset values. The government had to intervene and a severe recession followed. In addition to a banking crisis there was a currency crisis.

Most other OECD countries experienced similar episodes although they were less extreme than in Scandinavia. Higgins and Osler (1997) consider 18 OECD countries and document a significant rise in real estate and stock prices during the period 1984-89. These prices subsequently fell during the period 1989-1993. Regression results indicate a 10 percent increase in real residential real estate prices above the OECD average in 1984-1989 is associated with an 8 percent steeper fall than average in 1989-1993. Similarly, for equities a 10 percent increase above the average in the earlier period is associated with a 5 percent steeper fall in the later period. Higgins and Osler interpret this as suggestive of the existence of bubbles. Investment and real activity were also sharply curtailed during the latter period.

Mexico provides a dramatic illustration of an emerging economy affected by this type of problem. In the early 1990s the banks were privatized and financial liberalization occurred. Perhaps most significantly, reserve requirements were eliminated. Mishkin (1997) documents how bank credit to private nonfinancial enterprises went from a level of around 10 percent of GDP in the late 1980s to 40 percent of GDP in 1994. The stock market rose significantly during the early 1990s. In 1994 the Colosio assassination and the uprising in Chiapas triggered the collapse of the bubble. The prices of stocks and other assets fell and banking and foreign exchange crises occurred. These were followed by a severe recession.

Kaminsky and Reinhart (1996; 1999) study a wide range of crises in 20 countries, including 5 industrial and 15 emerging ones. A common precursor to most of the crises considered was financial liberalization and significant credit expansion. These were followed by an average rise in the price of stocks of about 40 percent per year above that occurring in normal times. The prices of real estate and other assets also increased significantly. At some point the bubble burst and the stock and real estate markets collapsed. In many cases banks and other intermediaries were overexposed to equity and real estate markets and about a year later on average a banking crisis ensued. This is often accompanied by an exchange rate crisis as governments choose between lowering interest rates to ease the banking crisis or raising interest rates to defend the currency. Finally, a significant fall in output occurs and the recession lasts for an average of about a year and a half.

In a study of the relationship between financial liberalization and financial fragility, Demirguc-Kunt and Detragiache (1998) study 53 countries during the period 1980-1995. They find that financial liberalization increases the probability of a banking crisis. However, a stronger institutional environment, in the sense of factors such as respect for the rule of law, a low level of corruption and good contract enforcement, reduces this effect. They also found that domestic credit growth precedes financial crises.

The economies in South East Asia underwent a similar experience to those recounted above. Table 1 (see pg. 16) shows the percentage increase in bank lending to the private sector. It can be seen that the increase in lending was significant in all countries. The effect on stock market and property prices is shown in Tables 2 and 3, respectively (see pg. 16). Stock prices or property prices, or both rose significantly and then collapsed in 1997 in all the countries that experienced a crisis. The peak levels of stock and real estate prices did not always occur just before the onset of crisis. It often took time before the problems that a collapse in asset prices caused for the banking system become clear. The case of Norway discussed above is another example where such a lag occurred.

The case of Taipei, China is a particularly interesting one. The tables indicate that it underwent a similar expansion in credit and stock and real estate prices rose but it avoided a
crisis. What the tables miss, however, is that Taipei, China had undergone financial liberalization during the 1980s and had a rapid rise in asset prices then. In 1990 a combination of restrictive monetary policy and a split in the ruling party led to a collapse in asset prices. Thus the figures for Taipei, China in Tables 1-3 refer to a time when asset prices had already fallen to a low level and were recovering. This experience affected the policies adopted by banks in the period leading up to 1997 and caused them to recapitalize during the boom years. Taipei, China’s banks also had conservative banking practices that helped them to avoid problems. For example, they only allowed borrowing up to 70% of the value of collateral while in other countries higher amounts, up to 90% in some cases, were allowed. These facts help to explain why Taipei, China was so different.

The evidence presented in this section shows that similar financial crises to those in South East Asia have occurred repeatedly in a wide range of different circumstances. Many occur in the absence of government guarantees, when banking regulation was not lax, when corruption and nepotism were absent and there was a competitive industrial market structure. For example, the United States in the late 1920s and early 1930s witnessed a dramatic rise in asset prices and a subsequent banking crisis when no government guarantees to banks existed. Similarly for many crises in the United States in the late nineteenth century. The financial systems of Norway, Finland and Sweden are significantly different from those of the South East Asian countries. Corruption and nepotism are not a problem. By and large institutions and the legal system are quite sophisticated and work well. All this suggests that the financial crises in South East Asia were caused by a market failure. Although particular features of their economies that the conventional analysis stresses were probably also contributing factors, the evidence in this section suggests they were not the primary reasons for the crises.

3. A Theory of Crises

The financial crises described in the previous section typically have three distinct phases. The first phase starts with financial liberalization, or with a conscious decision by the central bank to increase lending, or with some other similar event. The resulting expansion in credit is accompanied by an increase in the prices of assets, such as real estate and publicly traded stocks. This rise in prices continues for some time, possibly several years, as the bubble inflates. During the second phase the bubble bursts and asset prices collapse, often in a short period of time such as a few days or months, but sometimes over a longer period. The third phase is characterized by the default of many firms and other agents that have borrowed to buy assets at inflated prices. Banking and/or foreign exchange crises may follow this wave of defaults. The difficulties associated with the defaults, and banking and foreign exchange crises often cause problems in the real sector of the economy which can last for a number of years.

How can this sequence of events be understood? Standard theories of asset pricing assume that investors purchase assets with their own wealth. But in most financial systems, this is not the whole story. Intermediation is important. Many of the agents actually making the decision to buy real estate, stocks, and other assets do so with other people’s money. The purchase of real estate is usually financed by a bank loan or in some other similar way. If the investment is successful, the borrower repays the loan and retains the difference between the value of the asset, and the principal and interest. If the investment is unsuccessful, the borrower has limited liability and the lender bears the shortfall.
It is important to note that agency problems are not restricted to bank-based economies. Market-based financial systems also suffer from the same problem. In the United States and the United Kingdom a large proportion of stocks are held by mutual funds, pension funds, and insurance companies. Money managers also have incentives to take risk. If their investment strategy is successful, they may be rewarded by a share of the returns, but most importantly they will attract new investors in the future. Because they receive management fees in proportion to the assets under their control, they will be significantly better off as a result of their good performance. If the investment strategy is unsuccessful, there is a limit to the downside risk that the manager bears. In the worst case, he will be fired but in any case his liability is limited. Thus, when intermediaries make investment decisions, the incentive scheme they face has convex payoffs (see Allen and Gorton (1993)).

The agency problem of excessive risk taking associated with limited liability is crucial for the analysis presented below. In the corporate finance literature it has been widely assumed since Jensen and Meckling (1976) that the incentives for risk taking arising from debt finance are significant. As an example of this type of problem in the context of intermediation, there is considerable evidence that risk shifting was a significant factor in the U.S. savings and loan (S&L) crisis (see, for example, Benston et al. (1986)).

Allen and Gale (2000a) develop a model containing this kind of agency problem. The Appendix contains a numerical example to illustrate the phenomenon. For simplicity, investments are assumed to be debt financed. The borrower chooses the type of investments (safe or risky) and the lender is unable to observe how the funds are invested. As in Jensen and Meckling (1976) and Stiglitz and Weiss (1981), these assumptions imply there is a risk shifting problem. By buying risky assets, the borrower can shift downside risk onto the lender, but retains the right to any upside returns. The more risky the asset, the more attractive risk shifting becomes. When a significant proportion of investors in the market have these incentives, the equilibrium asset price will be high relative to the “fundamental” value of the asset, which is defined as the price that somebody would be willing to pay if she was investing her own wealth. The difference between the equilibrium price and the fundamental value is the “bubble”. Two factors are particularly important in determining the size of the bubble. One is the amount of credit that is available to finance speculative investment. The other is the degree of uncertainty. The greater is either of these factors, the greater is the bubble.

The relationship between credit and asset prices becomes even more complex in a dynamic context. In deciding how much he should pay for an asset today, an investor will consider the future price of the asset and the possibility of capital gains. The future price will depend in part on the level of credit that is anticipated in future periods. If an expansion of credit is anticipated, asset prices are likely to rise and this expectation will feed back into current prices. Thus, it is not only current credit expansion but anticipated future expansion that feeds the bubble in asset prices.

There is another aspect of future credit expansion that has a direct impact on current asset prices. It is unlikely that the future level of credit can be perfectly anticipated. There may in fact be a great deal of uncertainty about future credit expansion. The central bank has limited ability to control the amount of credit. In addition, there may be changes of policy preferences, changes of administration, and changes in the external environment, all of which may alter the amount of credit that will be created. The more uncertainty is associated with future credit, the more uncertain future asset prices will be. Because of the risk shifting
problem, uncertainty makes risky assets more attractive to the debt financed investor, and this results in a higher asset price and a larger bubble.

The theory thus predicts that bubbles will tend to occur when the current credit levels are high, when future credit levels are expected to be higher, and when future credit levels are expected to be uncertain. This is consistent with the fact that many asset bubbles associated with recent crises were preceded by financial liberalization. In the Scandinavian countries, there was a move away from restricted financial systems towards market-oriented ones. This led to an expansion in credit and also considerable uncertainty about the future level of credit. A similar sequence of events occurred in the South East Asian economies.

This account of the genesis and evolution of bubbles contrasts with McKinnon and Pill (1997, 1999) and Krugman (1998), where the bubble is created by government guarantees to the banking system or the prospect of an IMF bailout. While these factors will exacerbate the situation, it can be argued that they are not the primary causes of asset bubbles. In particular, they do not explain why bubbles have occurred so often in the absence of such guarantees or why they are so often associated with financial liberalization.

The second phase of the financial crisis involves the bursting of the bubble and a collapse in asset prices. In some of the episodes recounted in Section 2, it appears that the collapse was precipitated by a real shock. An example is the collapse in oil prices that triggered the bursting of the bubble in Norway. In other cases, the crisis appears to have been triggered by an event in the financial sector. A good example is Sweden’s tightening of credit in 1990, which precipitated the collapse in asset prices.

The effect of a real shock is easy to understand. Anything that affects the health of the businesses that make up the economy will clearly have a direct impact on asset prices. Furthermore, uncertainty about these factors will lead to uncertainty about stock prices. The effect of a financial shock is more complex.

The model in Allen and Gale (2000a) suggests that a critical determinant of asset prices is the expected amount and the volatility of credit expansion. In many cases financial liberalization leads to an expansion of credit that feeds a bubble in asset prices. These higher prices are in turn supported by the anticipation of further increases in credit and asset prices. Any faltering of this cumulative process may cause the bubble to burst and lead to a crisis. What is critical is the relationship between actual and expected credit expansion. Since anticipated expansion has been built into current asset prices, continued expansion is required to allow speculators to repay their debts. In fact, a positive level of credit expansion may be required to prevent the bubble from bursting. Allen and Gale (2000a) call a credit regime robust if there is no financial crisis as long as the level of credit does not contract. A fragile regime is one in which credit is actually required to expand at a positive rate in order to prevent a financial crisis. It is fairly easy to construct examples of fragile regimes. In fact, examples can be constructed where an arbitrarily high rate of credit expansion is necessary to prevent a crisis. In this case, the probability of a crisis is close to one.

The third phase of the crisis occurs after asset prices have collapsed. At this stage there will be widespread default and the banking system will come under severe strain. If the fall in asset prices is not too large, the banking system may be able to survive intact. However, in more extreme cases either many banks will fail and be liquidated or the government will be forced to step in and rescue the banks. For small countries there may also be a currency crisis as the government is forced to choose between lowering interest rates to save the banking system or raising them to protect the exchange rate. Even if rates are raised there may still be an exodus of capital. A moderate increase in interest rates may not be sufficient to prevent
capital flight because of the weakened state of the banking system and the uncertainty that often accompanies financial turbulence.

Perhaps the most important aspect of the third phase is the spillover of the financial crisis into the real economy. In practice, financial crises are often associated with a significant fall in output or at least a reduction in the rate of growth. Output fell dramatically in the South East Asian economies that were subject to crises. This was also the case in the Scandinavian countries.

Allen and Gale (2000a) does not analyze the relationship between financial and real sectors. However, Bernanke (1983), Bernanke and Gertler (1989) and Holmstrom and Tirole (1997), among others, have analyzed the spillover from the financial sector to the real sector. Holmstrom and Tirole (1997), for example, develop an incentive model of financial intermediation in which intermediaries and firms are credit-constrained. The predictions of the model are broadly consistent with the interaction between the real and financial sectors in the Scandinavian crises.

There are a number of other mechanisms that may lead to close ties between the health of the banking sector and the level of economic activity. The Basle Accord set requirements for minimum levels of capital in a wide range of countries. In addition there are domestic capital requirements in many countries. If banks suffer a wave of loan defaults, bank capital will necessarily be depleted. They can respond to this in a number of ways. One is to issue more equity or other securities that count towards the capital base. A second is to reduce the volume of new loans they make.

Raising new capital is problematic when a bank is beset with difficulties. The bank is effectively suffering from a debt overhang (Myers (1977)). Suppliers of capital will know that in the event of default their money will go to the depositors and other creditors, and so will be unwilling to supply it. Alternatively, the bank could sell off the loans, pay off its creditors, and remove the debt overhang. The problem with this course of action is that there is an option value of continuing the bank as a going concern. The value of this option is held by the current shareholders. They will be reluctant to shut down the bank and forego the option value. In addition, there may be a considerable problem in liquidating the loans at fair prices because markets for loans are thin. As Shleifer and Vishny (1992) have pointed out, the firms that will place the highest value on assets are likely to be those firms in the same industry. The liquidation value of assets is likely to be low when others in the same industry are also suffering from liquidity problems. A related argument is found in Allen and Gale (1994; 1998) who show that asset market prices depend on the amount of “cash in the market”. When many banks are trying to liquidate assets simultaneously, the price will be low because the amount of liquidity in the market is limited. For all these reasons, the debt overhang is hard to eliminate.

As a result, the bank may have no alternative but to cut back the volume of new loans. If banks do this simultaneously there can be a significant effect on output. This in turn can lead to more defaults and a further reduction in loans in a downward spiral.

Although it is easy to blame the Basle Accord and other capital adequacy regulations for causing a credit crunch, the same thing might happen under a laissez faire regime. There are several reasons why banks might wish to hold a “buffer” of equity capital. By analogy with the standard theory of the firm, it could be argued that a higher level of capitalization reduces moral hazard problems and reduces the probability of bankruptcy, where bankruptcy is assumed to involve deadweight costs. Even in the absence of capital adequacy regulations,
banks might well react to financial crises by trying to rebuild capital ratios by reducing the volume of new lending.

To the extent that capital adequacy requirements do restrict the amount of loans that banks are willing to extend, a relaxation in reserve requirements may help ease the situation. Such reductions can be temporary or permanent. This strategy has been tried in Venezuela, Spain, Argentina and Hungary (see Dziobek and Pazarbasioglu (1997)).

The third phase of the financial crisis can involve considerable costs in terms of reduced growth and lost output. It is for this reason that understanding financial crises is so important. In the next section, we turn to the policy issues raised by this analysis.

4. Policy Issues

The theory of crises outlined in the previous section raises two important policy issues. The first is how bubbles in asset prices can be prevented. The second is how to deal with the banking system and minimize the loss of output after an asset bubble has occurred and precipitated a banking crisis. Each of these is discussed in turn.

Although it has long been recognized that there is a link between monetary policy, inflation and asset prices (see, for example, Fama (1981)) there has only recently been an active debate concerning the extent to which central banks should target asset prices. The standard analysis of the link between stock prices and inflation suggests that when the money supply is increased, prices and wages will in the long run increase in line with the standard quantity theory of money. Depending on the relative speeds of adjustment of prices in the output and input markets’ profits and hence stock prices can be increased or decreased by inflation. The empirical evidence suggests that a rise in inflation (realized, expected or unexpected) reduces stock prices. This type of theory does not provide much guidance to central banks on how to target asset prices beyond suggesting that if inflation is controlled asset prices will be determined by fundamentals.

The theory outlined in Section 3 provides a rather different perspective on the relationship between monetary policy and asset prices. It emphasizes the importance of the level and volatility of credit for asset price determination and thus suggests an important role for monetary policy and the reserve requirements of banks in preventing the development of bubbles in asset prices. Governments and central banks should try to avoid unnecessary expansion of credit as well as unnecessary uncertainty about the path of credit expansion.

This suggests that financial liberalization is a particularly risky exercise, as experience confirms. In a liberalization regime, credit tends to increase dramatically and, because there is no experience with the new regime, uncertainty also increases significantly. If financial liberalization is to be undertaken, it should be done slowly and carefully. To the extent possible, the central bank should make clear how the volume of credit will evolve over time.

The second policy issue concerns how the government should intervene to deal with problems caused by a banking crisis and minimize the spillovers into the real economy. As outlined in Section 3, the collapse of a bubble can cause a significant debt overhang. The value of the option to continue together with the difficulty of liquidating loans for their fair value means that banks will try to remain in business as long as possible. In order to maintain levels of capital consistent with regulation, banks will reduce the volume of new loans and this will lead to a credit crunch. The reduction in output and the further negative impact this will have on the creditworthiness of other borrowers can lead to a significant reduction in output. To offset these negative effects, the government can try to recapitalize the banking system. This can involve direct infusions of funds or outright nationalization of
the banking system. Norway provides an interesting example of the effectiveness of swift government intervention.

As recounted in Section 2, lending increased dramatically in Norway in 1985 and 1986 as the financial system was liberalized and asset prices increased significantly. The bubble burst when oil prices collapsed in 1986. This led to a sharp increase in corporate bankruptcies and non-performing loans. According to Brown et al. (1998), most financial institutions incurred operating losses in 1987 and 1988 but it was thought that with the exception of a few finance companies and savings banks there would not be severe problems. In 1988 there was an officially-supported merger of two large savings banks. In 1989 further support was provided to the merged savings bank, five other savings institutions and two small commercial banks. By late 1989 most commercial banks were again becoming profitable and it appeared as though the crisis was at an end. However, from 1990-93 the largest commercial banks were hit by a wave of loan losses. Guarantee funds were quickly exhausted and the government and central bank developed new channels for transmitting funds to the banking sector. The level of bank-financed guarantee funds dispersed initially was about 0.9 percent of GDP. Once these were exhausted the government injected funds equivalent to a further 2.2 percent of GDP and the central bank another 1 percent of GDP. As a result of these interventions the government came to own an 87.5 percent stake in the largest commercial bank (Den Norske Bank) and became the sole owner of the second and sixth largest commercial banks (Christiana Bank & Kreditkassen and Fokus Bank). The original shareholders of these banks had their holdings written off.

The objective of official support during this period was to restore capital ratios to at least 8 percent and to restore the profitability of the banks. There was considerable success in achieving these aims. Profitability was restored to roughly pre-crisis levels and operating expenses were reduced by about a third. During 1995-96 Fokus Bank was re-privatized and the government stakes in the two largest commercial banks were reduced to just over 50 percent.

The government’s prompt action in restoring the banking system meant that it was quickly able to revert to performing its normal economic function. The recession in Norway was relatively short-lived and the economy started growing again fairly quickly. The return to robust economic growth in turn reinforced the recovery in the banking system.

As discussed in Section 2, Sweden and Finland also underwent severe banking crises and suffered from sharp recessions in the late 1980s and early 1990s. Their governments also intervened quickly and extensively. Although the details differed from Norway the effect was the same in the sense that the macroeconomic impacts of the banking collapses were short-lived and the economies resumed growing again quite quickly (see Drees and Pazarbasioglu (1995) and Englund (1999)).

A possible alternative way of reducing the effects of debt overhang is the development of a corporate bond market. Such a market will allow the firms to borrow even when banks are unwilling to do so. The problem here is that there may be a debt overhang in firms which prevents borrowing in a similar way to the debt overhang in banks. For this reason recapitalization of the banking system is likely to be a more effective means of minimizing the negative effects of a collapse in asset prices.

In summary, it has been argued that the most important policy objective should be the avoidance of bubbles in asset prices. This can best be achieved by the government and central bank increasing credit in a responsible way and minimizing the uncertainty associated with future credit and monetary policy. Financial liberalization should be undertaken slowly
and with the minimum uncertainty possible regarding future developments. Financial structure is not an important factor here because bubbles can occur in both bank-based and market-based financial systems. If a bubble in asset prices does occur and bursts, then the best way of minimizing the debt overhang problem is for the government to recapitalize the banking system.

5. Financial Structure and Growth

In designing policies to prevent financial crises it would be unfortunate if long-run growth rates were reduced. The conventional prescription of altering the financial structure and moving towards a market-based system may not be compatible with this goal. The high growth that occurred took place with bank-based systems.

There is considerable evidence that the level of financial development of a country affects growth. Levine (1997) provides an excellent survey of the literature and concludes that countries with larger banks and more active stock markets grow faster in subsequent decades. In general this literature does not distinguish between the effects of bank-based and market-based systems. Exceptions are Allen and Gale (1999; 2000b). They develop a model that suggests that bank-based systems are effective at financing industries where the technology and business strategies are well known. Market-based systems, on the other hand, are desirable when the technology is new or constantly evolving and as a result there is diversity of opinion and people agree to disagree.

Market finance is identified with situations in which investors become informed and then decide individually whether to contribute to the funding of the project. Examples of market finance include IPO’s, the private equity market and venture capital firms. Venture capital firms have some of the features of markets and intermediaries, but they are included in market finance because of their size. The number of investors in a single firm is relatively small and there is a large number of firms to choose from, so there is likely to be homogeneity of beliefs among the investors in a single firm. Intermediated finance is identified with large institutions, such as banks, where there is likely to be heterogeneity of beliefs.

When a new industry starts up there are several types of uncertainty. In addition to uncertainty about the effectiveness of the technology, there is uncertainty about the best management strategies to follow and the consequences of each strategy. Markets have considerable advantages in such situations. A large number of people participates directly in the investment decision. This is costly because each investor has to acquire the information to make the decision; but it has the great advantage that each investor makes his own decision based on his own information and his own priorities. This ability to agree to disagree allows innovative projects to be financed.

The nature of intermediated finance is different. The decision to invest in a project is delegated to a manager. Funds may be allocated to a project even if some of the investors providing the funds think the project is a bad one. The advantage of the intermediary is that it economizes on the acquisition of information, because only the manager needs to become informed (cf. Diamond (1984)). This is fine when investors have homogeneous beliefs. The problem arises when there is diversity of opinion. Even if the manager does his best to choose projects he honestly believes are profitable (i.e., there is no principal-agent problem) diversity of opinion implies that some providers of finance would disagree with those decisions even if they had the same information as the manager. If the probability of
disagreement is sufficiently high, the investors may be unwilling to provide funds in the first place. Thus, intermediated finance may result in under-funding of innovative projects.

The analysis suggests that diversity of opinion and the degree of risk are crucial in determining the relative performance of markets and intermediaries. Markets will be especially effective at financing industries which are new and where relatively little data is generated, that is, industries in which information is sparse and diversity of opinion persists.

Biotechnology is a good example of a new industry in which very little information was initially available. The lack of information did not only relate to the technology. Given the lack of similar industries, it was also unclear which business strategies should be pursued. All this led to great diversity of opinion. Nevertheless, this industry has been very successfully funded through the stock market.

Diversity of opinion can also arise in established industries. When there is only limited experience with a new technology, there is usually a wide range of views on the value of the technology and the best way to proceed. A good example of this is provided by the computer industry. IBM was clearly dominant during the 1950s, 1960s and 1970s when mainframe machines were the primary technology. In the 1980s the development of the personal computer dramatically changed the industry. Initially, it was not at all clear how this change would affect the industry and what strategies the company should adopt. Indeed, IBM lost its almost unchallenged dominance of the industry because it did not initially realize that personal computers represented a long term competitive threat to mainframes.

The actual development of new industries and new technologies is, of course, extremely complex and the provision of finance is only one part of this process. Establishing the historical importance of market-based versus bank-based finance empirically would be a lengthy and difficult exercise. However, as Allen (1993) notes, it is of some interest that many new industries were developed in the United Kingdom or the United States, which are the countries that have historically had the most highly developed financial markets. For example, railways were first developed in the United Kingdom and to a large extent both the U.K.’s and other countries’ railways were financed through the London Stock Exchange in the nineteenth century. Even though the automobile was invented in Germany, it was in the United States that automobiles were first produced on a large scale. The aircraft, consumer durable, computer and biotechnology industries have been largely developed in the United States. It is not uniformly the case that all new industries were first developed in the United Kingdom or the United States. For example, the chemical industry was initially developed on a large scale in Germany. Nevertheless, casual empiricism suggests that a surprising proportion of new industries have been developed in the United Kingdom and the United States.

Given that most of the economies in South East Asia are engaged in traditional industries rather than new industries, Allen and Gale’s theory suggests that keeping bank-based financial systems is desirable in terms of promoting growth. The implication is that changing financial structure to promote financial markets may lead to a reduction in growth for emerging economies.

6. Concluding Remarks

This paper has described a model of bubbles and ensuing financial crises which is consistent with events observed in South East Asia, Scandinavia and many other countries. It has been argued that a financial system, whether bank-based or market-based, can lead to risk shifting and bubbles in asset prices. If the bubble bursts and asset prices collapse a banking crisis can
follow. This may spill over into the real economy and lead to a fall in output. Policy should be directed at ensuring an asset price bubble does not occur by keeping credit growth at an appropriate level and avoiding uncertainty about future financial policy. However, if a bubble does occur and the inevitable collapse in asset prices leads to a banking crisis, swift intervention to eliminate the debt overhang problem is desirable.

Contrary to the conventional analysis, the arguments presented above suggest that financial structure is not the most important factor determining whether financial crises occur. They happen in both bank-based and market-based systems. What is important in preventing financial crises is that central banks and governments avoid a rapid expansion of credit and the introduction of uncertainty about future levels of credit.

This is not to say that financial structure is unimportant. Having effective banking regulation is clearly desirable in preventing crisis. Bank-based systems also may be helpful in promoting growth in economies where most of the major industries are concerned with conventional manufacturing and the technology and business strategies are well known. Moving towards market-based systems would not be helpful for such economies. For economies that want to encourage high technology industries where diversity of opinion is present, such a move may be desirable. The financial liberalization necessary for such a move needs to be handled with great care and uncertainty needs to be minimized if problems of financial crisis are to be avoided.
Appendix

This appendix presents a simple example to illustrate the model in Allen and Gale (2000a) and show how asset price bubbles can arise. For ease of exposition the example is slightly different from the model presented there. The theory is based on rational behavior. Standard models of asset pricing assume people invest with their own money. The price of an asset in this benchmark case is identified as the “fundamental”. A bubble is said to occur when the price of an asset rises above this benchmark (see Allen, Morris and Postlewaite (1993)). If the people making investment decisions borrow money, then because of default they are only interested in the upper part of the distribution of returns of the risky asset. As a result there is a risk-shifting problem and the price of the risky asset is bid up above the benchmark so there is a bubble.

In the example, the people who make investment decisions do so with borrowed money. If they default there is limited liability. Lenders cannot observe the riskiness of the projects invested in so there is an agency problem. As explained in Section 3 a similar problem can arise when institutional investors make the investment decisions.

Initially there are two dates \( t = 1, 2 \). There are two assets in the example. The first is a safe asset in variable supply. For each 1 unit invested in this asset at date 1 the output is 1.5 at date 2. The second is a risky asset in fixed supply that can be thought of as real estate or stocks. There is 1 unit of this risky asset. For each unit purchased at price \( P \) at date 1 the output is 6 with prob. 0.25 and 1 with prob. 0.75 at date 2 so the expected payoff is 2.25. The details of the two assets are given below.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Supply</th>
<th>Investment at date 1</th>
<th>Payoff at date 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>Variable</td>
<td>1</td>
<td>1.5</td>
</tr>
</tbody>
</table>
| Risky  | 1       | \( P \)              | \( R = 6 \) with prob. 0.25  
                                                   \( = 1 \) with prob. 0.75  
                                                   \( ER = 2.25 \) |

All agents in the model are assumed to be risk neutral.

*The Fundamental*

Suppose each investor has wealth 1 initially and invests her own wealth directly. Since everybody is risk neutral the marginal returns on the two assets must be equated.

\[
\frac{2.25}{P_F} = \frac{1.5}{1}
\]

or

\[
P_F = \frac{2.25}{1.5} = 1.5
\]

The value of the asset is simply the discounted present value of the payoff where the discount rate is the opportunity cost of the investor. This is the classic definition of the fundamental. The benchmark value of the asset is thus 1.5 and any price above this is termed a bubble.
Intermediated Case

Suppose next that investors have no wealth of their own. They can borrow to buy assets at a rate of 33 1/3 percent. The most they can borrow is 1. If they borrow 1 they repay 1.33 if they are able to. If they are unable to pay this much the lender can claim whatever they have. As explained above lenders cannot observe how loans are invested and this leads to an agency problem.

The first issue is can \( P = 1.5 \) be the equilibrium price? Consider what happens if an investor borrows 1 and invests in the safe asset:

\[
\text{Marginal return safe asset} = 1.5 - 1.33 = 0.17
\]

Suppose instead she borrows 1 and invests in the risky asset. She purchases \( 1/1.5 \) units of the asset. When the payoff is 6 she repays the loan and interest of 1.33 and keeps what remains. When it is 1 she defaults and the entire payoff goes to the lender so she receives 0.

\[
\text{Marginal return risky asset} = 0.25\left( \frac{1}{1.5} \times 6 - 1.33 \right) + 0.75 \times 0 = 0.67
\]

The risky asset is clearly preferred when \( P = 1.5 \) since \( 0.67 > 0.17 \). This is the risk shifting problem. The expected payoff on the two investments in 1 unit of the safe asset and \( 1/1.5 \) units of the risky asset is the same at 1.5. The risky asset is more attractive to the borrower though. With the safe asset the borrower obtains 0.17 and the lender obtains 1.33. With the risky asset the borrower obtains 0.67 while the lender obtains \( 0.25[1.33] + 0.75[1 \times (1/1.5)] = 1.5 - 0.67 = 0.83 \). The risk of default allows 0.5 in expected value to be shifted from the lender to the borrower. If the lender could prevent the borrower from investing in the risky asset he would do so but he cannot since this is unobservable.

What is the equilibrium price of the risky asset given this agency problem? In an equilibrium where the safe asset is used, the price of the risky asset, \( P \), will be bid up since it is in fixed supply, until the expected profit of borrowers is the same for both the risky and the safe asset:

\[
0.25\left( \frac{1}{P} \times 6 - 1.33 \right) + 0.75 \times 0 = 1.5 - 1.33
\]

so

\[
P = 3
\]

There is a bubble with the price of the risky asset above the benchmark of 1.5.

The idea that there is a risk shifting problem when the lender is unable to observe how the borrower invests the funds is not new (see, e.g., Jensen and Meckling (1976) and Stiglitz and Weiss (1981)). However, it has not been widely applied in the asset pricing literature. Instead of the standard result in corporate finance textbooks that debt-financed firms are willing to accept negative net present value investments, the manifestation of the agency problem here is that the debt-financed investors are willing to invest in and bid up assets priced above their fundamental.

The amount of risk that is shifted depends on how risky the asset is. The greater the risk the greater the potential to shift risk and hence the higher the price will be. To illustrate
this, consider the previous example but suppose the return on the risky assets is a mean-preserving spread of the original returns.

<table>
<thead>
<tr>
<th>Asset</th>
<th>Supply</th>
<th>Investment at date 1</th>
<th>Payoff at date 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe</td>
<td>Variable</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Risky</td>
<td>1</td>
<td>P</td>
<td>R = 9 with prob. 0.25&lt;br&gt; = 0 with prob. 0.75&lt;br&gt; ER = 2.25</td>
</tr>
</tbody>
</table>

Now the price of the risky asset is given by

\[
0.25 \left( \frac{1}{P} \times 9 - 1.33 \right) + 0.75 \times 0 = 1.5 - 1.33
\]

so

\[
P = 4.5
\]

More risk is shifted and as a result the price of the risky asset is bid up to an even higher level. In the equilibria considered above the investors are indifferent between investing in the safe and risky asset. Suppose for the sake of illustration that when indifferent half choose to invest in the risky asset and half choose to invest in the safe asset:

\[
\text{Bank's payoff} = 0.5[0.25 \times 1.33 + 0.75 \times 1] + 0.5[1.33] = 1.21
\]

If the banking sector is competitive this payoff will be paid out to depositors. In this case it is the depositors who bear the cost of the agency problem. In order for this allocation to be feasible markets must be segmented. The depositors and the banks must not have access to the assets that the investors who borrow invest in. Clearly if they did they would be better off to just invest in the safe asset rather than put their money in the bank or lend to the investors.
### Table 1
Percentage Growth in Bank Lending to the Private Sector

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong, China</td>
<td>N/A</td>
<td>10</td>
<td>20</td>
<td>20</td>
<td>11</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Indonesia</td>
<td>18</td>
<td>12</td>
<td>25</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>46</td>
</tr>
<tr>
<td>Malaysia</td>
<td>21</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>31</td>
<td>26</td>
<td>30</td>
</tr>
<tr>
<td>Philippines</td>
<td>7</td>
<td>25</td>
<td>41</td>
<td>26</td>
<td>45</td>
<td>49</td>
<td>29</td>
</tr>
<tr>
<td>Singapore</td>
<td>12</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td>20</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>Korea</td>
<td>21</td>
<td>13</td>
<td>13</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>22</td>
</tr>
<tr>
<td>Taipei, China</td>
<td>21</td>
<td>29</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Thailand</td>
<td>20</td>
<td>21</td>
<td>24</td>
<td>30</td>
<td>24</td>
<td>15</td>
<td>20</td>
</tr>
</tbody>
</table>

Based on Table 18 of Corsetti et al. (1998a). N/A is Not Available.

### Table 2
Stock Market Price Indexes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong, China</td>
<td>4,297</td>
<td>5,512</td>
<td>11,888</td>
<td>8,191</td>
<td>10,073</td>
<td>13,451</td>
<td>10,722</td>
</tr>
<tr>
<td>Indonesia</td>
<td>247</td>
<td>274</td>
<td>588</td>
<td>469</td>
<td>513</td>
<td>637</td>
<td>401</td>
</tr>
<tr>
<td>Malaysia</td>
<td>556</td>
<td>643</td>
<td>1,275</td>
<td>971</td>
<td>995</td>
<td>1,237</td>
<td>594</td>
</tr>
<tr>
<td>Philippines</td>
<td>1,151</td>
<td>1,256</td>
<td>3,196</td>
<td>2,785</td>
<td>2,594</td>
<td>3,170</td>
<td>1,869</td>
</tr>
<tr>
<td>Singapore</td>
<td>1,490</td>
<td>1,524</td>
<td>2,425</td>
<td>2,239</td>
<td>2,266</td>
<td>2,216</td>
<td>1,529</td>
</tr>
<tr>
<td>Korea</td>
<td>610</td>
<td>678</td>
<td>866</td>
<td>1,027</td>
<td>882</td>
<td>651</td>
<td>376</td>
</tr>
<tr>
<td>Taipei, China</td>
<td>4,600</td>
<td>3,377</td>
<td>6,070</td>
<td>7,111</td>
<td>5,158</td>
<td>6,933</td>
<td>8,187</td>
</tr>
<tr>
<td>Thailand</td>
<td>711</td>
<td>893</td>
<td>1,682</td>
<td>1,360</td>
<td>1,280</td>
<td>831</td>
<td>372</td>
</tr>
</tbody>
</table>

Based on Table 10 of Corsetti et al. (1998a).

### Table 3
Property Market Price Indexes

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hong Kong, China</td>
<td>453</td>
<td>554</td>
<td>1,392</td>
<td>862</td>
<td>1,070</td>
<td>1,682</td>
<td>941</td>
</tr>
<tr>
<td>Indonesia</td>
<td>119</td>
<td>66</td>
<td>214</td>
<td>140</td>
<td>112</td>
<td>143</td>
<td>40</td>
</tr>
<tr>
<td>Malaysia</td>
<td>113</td>
<td>126</td>
<td>369</td>
<td>240</td>
<td>199</td>
<td>294</td>
<td>64</td>
</tr>
<tr>
<td>Philippines</td>
<td>34</td>
<td>39</td>
<td>81</td>
<td>80</td>
<td>87</td>
<td>119</td>
<td>59</td>
</tr>
<tr>
<td>Singapore</td>
<td>280</td>
<td>250</td>
<td>541</td>
<td>548</td>
<td>614</td>
<td>648</td>
<td>357</td>
</tr>
<tr>
<td>Korea</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Taipei, China</td>
<td>71</td>
<td>57</td>
<td>137</td>
<td>109</td>
<td>59</td>
<td>55</td>
<td>55</td>
</tr>
<tr>
<td>Thailand</td>
<td>82</td>
<td>168</td>
<td>367</td>
<td>232</td>
<td>192</td>
<td>99</td>
<td>7</td>
</tr>
</tbody>
</table>

Based on Table 11 of Corsetti et al. (1998a). N/A is Not Available.
References


WORKING PAPER SERIES

➢ From Boom to Crisis and Back Again: What Have We Learned?
  February 2000  Code: 07-2000  by Barry Bosworth and Susan M. Collins

➢ Development of the Financial System in Post-Crisis Asia
  March 2000  Code: 08-2000  by John Williamson

➢ The Institutional Foundations of Market Transition in the People’s Republic of China
  May 2000  Code: 09-2000  by Yingyi Qian

➢ Financial Structure and Financial Crisis
  June 2000  Code: 10-2000  by Franklin Allen

EXECUTIVE SUMMARY SERIES

➢ Banking Supervision and Competition Policy
  (No. S14/00)

➢ Corporate Governance in Asia
  (No. S15/00)

➢ Policy Issues on Privatization
  (No. S16/00)

➢ Public Expenditure Management
  (No. S17/00)

➢ Lessons from the Asian Economic Crisis and Implications for Cambodia
  (No. S18/00)

HOW TO CONTACT US?

Asian Development Bank Institute
Kasumigaseki Building 8F
3-2-5 Kasumigaseki
Chiyoda-ku, Tokyo 100-6008
Japan
Tel: +81 (03) 3593-5500
Fax: +81 (03) 3593-5571
E-mail: publications@adbi.org
www.adbi.org

Papers are also available online at the ADBI Internet site:
http://www.adbi.org/publications/publicat.htm