2007
Benchamarking and Data Book of Water Utilities in India

A partnership between Ministry of Urban Development Government of India and Asian Development Bank
PREFACE

Water supply is crucial to addressing the challenge of urban development. It is one of the five urban basic services being addressed by the Government of India, under the Jawaharlal Nehru National Urban Renewal Mission (JNNURM), which is probably the single most important initiative in the history of our country in developing its urban areas. Reform in the urban water supply sector under the mission is about change to reach the ultimate objective of making water available on a 24 x 7 basis to everyone, especially to the urban poor.

The publication of the 2007 Benchmarking and Data Book of Water Utilities in India is very timely as it is a first step in benchmarking service levels for the urban water supply sector. Reliable performance data for planning will be necessary to monitor and sustain the reforms under JNNURM over the 7-year period and beyond. Fifty percent of our cities do not have piped water supplies, and performance information on the 20 cities in the Data Book will help us plan for sustainable water supplies for them. Reforms that are mandated and incentivized under JNNURM are focused on service improvement, which is aimed at bringing more accountability and transparency in utility operations. Transparency and community participation in service delivery can go a long way in improving performance. The Data Book supports all these especially in helping bring financial discipline in water utility operations through public–private partnerships (PPP), which is an important element of the JNNURM program.

Recognizing the importance of benchmarking, the Ministry is encouraging utilities to mainstream benchmarking activities in their operations and annual business planning. The benchmarking project is showing the way for standardizing benchmarking for the five urban services under JNNURM. However, these benchmarking efforts should lead toward the vision of 24x7 water supplies for all. The results presented in the Data Book tell us that we have to make changes in our management practices, such as metering; applying appropriate user charges; reducing our water losses; and increasing water availability, coverage, and access in partnership with our customers, stakeholders, and development partners.

We would like to thank the Asian Development Bank, the members of the project team, and the 20 participating water utilities for preparing and publishing the Indian Water Utilities Data Book that should help us take the necessary first steps toward 24x7 water for all.

M. Rajamani
Joint Secretary (UD) and Mission Director (JNNURM)
Ministry of Urban Development
Government of India
FOREWORD

In December 2005, the Government of India (GOI) launched the Jawaharlal Nehru National Urban Renewal Mission (JNNURM), which formally envisages central government investment of potentially up to US$11 billion on basic urban infrastructure and services (water supply, waste management, public transportation, etc.) in 63 identified cities over the next 7 years.

The Asian Development Bank (ADB) and the GOI have agreed that information on selected JNNURM cities would be useful for their work in identifying projects in support of the JNNURM program. The Ministry of Urban Development (MoUD) with support from ADB embarked on a Benchmarking and Water Utilities Data Book Project for 20 selected water utilities in India. Benchmarking has long been proven to be an effective tool for improving an organization’s performance. Data collected from the project will feed into the JNNURM and support utilities to better access MoUD assistance, with good information on their performance.

The 2007 Benchmarking and Data Book of Water Utilities in India is a comprehensive compilation of information on the performance of Indian water utilities. It builds on ADB’s experience from the two Water Utilities Data Books for the Asian and Pacific Region published in 1993 and 1997, and the more recent Water in Asian Cities in 2004, which were all well received by stakeholders and have served as useful reference documents. The 2007 Benchmarking and Data Book of Water Utilities in India provides information from water utilities in 20 JNNURM cities and is based largely on 2005–2006 data. It comprises three parts. Part I is a summary of findings and brief comments thereon. Part II consists of comparison charts and tables of a number of important performance parameters. Part III gives the utility and city profiles.

Information for the Data Book was derived from questionnaires designed by ADB and agreed upon and completed by the participating utilities. Much effort has gone into confirming the accuracy and consistency of information provided by the utilities. Many clarifications were sought by the project team and much data is presented with footnotes which suggest explanations for apparent discrepancies.

Funding for the preparation of the Data Book was provided by the Cooperation Fund for the Water Sector, financed by the Government of The Netherlands and Norway, and administered by ADB. However, it may be noted that the views and analysis expressed herein do not necessarily reflect those of ADB.

The Data Book was prepared in ADB’s Energy, Transport, and Water Division, Regional and Sustainable Development Department (RSDD), under the overall guidance of K. E. Seetharam, Principal Water Supply and Sanitation Specialist supported by Theresa Audrey O. Esteban, Sector Officer, RSDD, and staff of South Asia Department’s Urban Development Division and India Resident Mission. The Project was executed and managed in India through a Project Team headed by Mr. M. Rajamani, Joint Secretary, Ministry of Urban Development, India with support from the following team members: Mr. Cesar E. Yñiguez, Benchmarking Adviser; Dr. K.N. Satyanarayana, IIT Madras, Technical Expert; and Mr. S. Krishnamurthy and Ms. Catherine Rose James, ICRA Management Consulting Services Ltd., Benchmarking Coordinators.

The provision of adequate, safe, and reliable water supplies on a 24x7 basis in the context of an increasing population and rapid urban development in India will be a major challenge to the Government of India and its development partners. We hope that this Data Book will contribute in understanding the challenge better, and in helping the stakeholders define the best ways of meeting it.

WooChong Um
Director
Energy, Transport and Water, RSDD
Asian Development Bank
ACKNOWLEDGMENTS

The Asian Development Bank and the Ministry of Urban Development, Government of India wish to thank the following urban local bodies and their water utilities for their cooperation in providing the information that made the publication of this data book possible.

<table>
<thead>
<tr>
<th>City</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmedabad</td>
<td>Ahmedabad Municipal Corporation</td>
</tr>
<tr>
<td>Amritsar</td>
<td>Municipal Corporation, Amritsar</td>
</tr>
<tr>
<td>Bangalore</td>
<td>Bangalore Water Supply and Sewerage Board</td>
</tr>
<tr>
<td>Bhopal</td>
<td>Bhopal Municipal Corporation</td>
</tr>
<tr>
<td>Chandigarh</td>
<td>Municipal Corporation, Chandigarh</td>
</tr>
<tr>
<td>Chennai</td>
<td>Chennai Metropolitan Water Supply and Sewerage Board</td>
</tr>
<tr>
<td>Coimbatore</td>
<td>Coimbatore City Municipal Corporation</td>
</tr>
<tr>
<td>Indore</td>
<td>Indore Municipal Corporation</td>
</tr>
<tr>
<td>Jabalpur</td>
<td>Jabalpur Municipal Corporation</td>
</tr>
<tr>
<td>Jamshedpur</td>
<td>Jamshedpur Utilities and Services Company Limited</td>
</tr>
<tr>
<td>Kolkata</td>
<td>Kolkata Municipal Corporation</td>
</tr>
<tr>
<td>Mathura</td>
<td>Mathura Municipal Council</td>
</tr>
<tr>
<td>Mumbai</td>
<td>Municipal Corporation of Greater Mumbai</td>
</tr>
<tr>
<td>Nagpur</td>
<td>Nagpur Municipal Corporation</td>
</tr>
<tr>
<td>Nashik</td>
<td>Nashik Municipal Corporation</td>
</tr>
<tr>
<td>Rajkot</td>
<td>Rajkot Municipal Corporation</td>
</tr>
<tr>
<td>Surat</td>
<td>Surat Municipal Corporation</td>
</tr>
<tr>
<td>Varanasi</td>
<td>Varanasi Jal Sansthan</td>
</tr>
<tr>
<td>Vijayawada</td>
<td>Vijayawada Municipal Corporation</td>
</tr>
<tr>
<td>Visakhapatnam</td>
<td>Greater Visakhapatnam Municipal Corporation</td>
</tr>
</tbody>
</table>
Abbreviations

Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADB</td>
<td>Asian Development Bank</td>
</tr>
<tr>
<td>AMC</td>
<td>Ahmedabad Municipal Corporation</td>
</tr>
<tr>
<td>BMC</td>
<td>Bhopal Municipal Corporation</td>
</tr>
<tr>
<td>BOT</td>
<td>build–operate–transfer</td>
</tr>
<tr>
<td>BPL</td>
<td>below poverty line</td>
</tr>
<tr>
<td>BWSSB</td>
<td>Bangalore Water Supply and Sewerage Board</td>
</tr>
<tr>
<td>CCMC</td>
<td>Coimbatore City Municipal Corporation</td>
</tr>
<tr>
<td>CMWSSB</td>
<td>Chennai Metropolitan Water Supply and Sewerage Board</td>
</tr>
<tr>
<td>GIS</td>
<td>Geographic Information System</td>
</tr>
<tr>
<td>GOI</td>
<td>Government of India</td>
</tr>
<tr>
<td>GVMC</td>
<td>Greater Visakhapatnam Municipal Corporation</td>
</tr>
<tr>
<td>HC</td>
<td>house connection</td>
</tr>
<tr>
<td>HSC</td>
<td>house service connection</td>
</tr>
<tr>
<td>HUDCO</td>
<td>Housing and Urban Development Corporation</td>
</tr>
<tr>
<td>IIT</td>
<td>Indian Institute of Technology</td>
</tr>
<tr>
<td>IMC</td>
<td>Indore Municipal Corporation</td>
</tr>
<tr>
<td>JMC</td>
<td>Jabalpur Municipal Corporation</td>
</tr>
<tr>
<td>IVRS</td>
<td>Interactive Voice Response System</td>
</tr>
<tr>
<td>JNNURM</td>
<td>Jawaharlal Nehru Urban Renewal Mission</td>
</tr>
<tr>
<td>JUSCO</td>
<td>Jamshedpur Utilities and Services Company, Limited</td>
</tr>
<tr>
<td>KMC</td>
<td>Kolkata Municipal Corporation</td>
</tr>
<tr>
<td>MCA</td>
<td>Municipal Corporation, Amritsar</td>
</tr>
<tr>
<td>MCC</td>
<td>Municipal Corporation, Chandigarh</td>
</tr>
<tr>
<td>MCGM</td>
<td>Municipal Corporation of Greater Mumbai</td>
</tr>
<tr>
<td>MMC</td>
<td>Mathura Municipal Council</td>
</tr>
<tr>
<td>MoUD</td>
<td>Ministry of Urban Development</td>
</tr>
<tr>
<td>NMC</td>
<td>Nagpur Municipal Corporation</td>
</tr>
<tr>
<td>NMC</td>
<td>Nashik Municipal Corporation</td>
</tr>
<tr>
<td>NRW</td>
<td>nonrevenue water</td>
</tr>
<tr>
<td>O&M</td>
<td>operation and maintenance</td>
</tr>
<tr>
<td>PPP</td>
<td>Public–Private Partnerships</td>
</tr>
<tr>
<td>PT</td>
<td>public tap</td>
</tr>
<tr>
<td>RMC</td>
<td>Rajkot Municipal Corporation</td>
</tr>
<tr>
<td>Rs</td>
<td>Indian rupee</td>
</tr>
<tr>
<td>SCADA</td>
<td>Supervisory Control and Data Acquisition</td>
</tr>
<tr>
<td>SMC</td>
<td>Surat Municipal Corporation</td>
</tr>
<tr>
<td>SP</td>
<td>stand post</td>
</tr>
<tr>
<td>UFW</td>
<td>unaccounted for water</td>
</tr>
<tr>
<td>ULB</td>
<td>Urban Local Body</td>
</tr>
<tr>
<td>VJS</td>
<td>Varanasi Jal Sansthan</td>
</tr>
<tr>
<td>VMC</td>
<td>Vijayawada Municipal Corporation</td>
</tr>
</tbody>
</table>
Measurement Units and Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>km²</td>
<td>square kilometer</td>
</tr>
<tr>
<td>lpcd</td>
<td>liter per capita per day</td>
</tr>
<tr>
<td>m</td>
<td>meter</td>
</tr>
<tr>
<td>m³</td>
<td>cubic meter</td>
</tr>
<tr>
<td>m³/day</td>
<td>cubic meter per day</td>
</tr>
<tr>
<td>m³/day/c</td>
<td>cubic meter per day per capita</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter</td>
</tr>
<tr>
<td>n.a.</td>
<td>not available or not applicable</td>
</tr>
<tr>
<td>sq km</td>
<td>square kilometer</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>"</td>
<td>inch</td>
</tr>
</tbody>
</table>
METHODOLOGY

The 2007 Benchmarking and Data Book of Water Utilities in India examined the performance of water utilities in 20 cities in India, with service areas ranging from one city to several towns and cities. An inception workshop was held at the India Institute of Technology Madras, Chennai on 17–18 January 2007 to i) provide the participants an understanding of benchmarking as a tool for performance improvement, ii) select the most appropriate performance indicators to measure performance of water utilities, and iii) plan the implementation of the benchmarking and water utilities data book project.

The water utilities that provided data included 15 municipal corporations, two city boards, a municipal council, a local autonomous body, and a private operator. Data collected through a water utility questionnaire (shown in appendix 1) were for 2005–2006. For purposes of presentation and discussions, the name of the city or town served by the utility is used instead of the utility name, for example, Jamshedpur instead of Jamshedpur Utilities and Services Co., Ltd., or Varanasi instead of Varanasi Jal Sansthan.

Performance indicators were derived using basic data provided by the utilities and following various computations using the formulas in the following sections below. Almost all the data used in comparing the indicators in the tables, graphs, charts, and figures are found in each utility and area profile; hence, exact values can be extracted.

Many clarifications were sought on the data provided especially for consistency between the data and indicators; thus, the data finally presented are the best that could be obtained in the circumstances. Nevertheless, ADB is conscious that not all data are 100% reliable. In some instances, estimates were given in the absence of available measures, such as in cases where no total metering of production and consumption is available. This makes unaccounted for water or daily per capita consumption data estimates at best. If there are doubts on the reliability of some data presented, the reader is advised to verify the information from the utility whose contact details are provided in the utility profile.

The suggested evaluation criteria on utility performance are provided in appendix 2. This may be modified to suit the particular situation in India in measuring the overall utility performance in a particular given period.

The information presented in this book was either taken from the water utility questionnaire or was based on computations using data from the questionnaire. The formulas used for the computations are shown below.

1. Water supply coverage (%)
 \[\frac{[(population served by HC) + (population served by PT)] \times 100}{[total population in the area of responsibility]} \]

2. Per capita consumption (lpcd)
 \[\frac{[total annual domestic consumption (m^3) \times 1,000/365]}{[number of people served]} \]

3. Production/population (m^3/day/c)
 \[\frac{[annual production volume (m^3) / 365]}{[number of people served]} \]

4. Unaccounted for water (%) –
 \[\frac{[total annual production (m^3) - total annual consumption (m^3)] \times 100}{[total annual production (m^3)]} \]
5. Average tariff (Rs/m3)
 \[\text{Average tariff} = \frac{\text{total annual billing (Rs)}}{\text{total annual consumption (m}^3\text{)}} \]

6. Unit production cost (Rs/m3)
 \[\text{Unit production cost} = \frac{\text{annual O&M cost (Rs)}}{\text{total annual production (m}^3\text{)}} \]

7. Operating ratio
 \[\text{Operating ratio} = \frac{\text{annual O&M cost (Rs)}}{\text{annual revenue (Rs)}} \]

8. Revenue collection efficiency (%)
 \[\text{Revenue collection efficiency} = \frac{\text{total annual collections (Rs)}}{\text{total annual billings (Rs)}} \times 100 \]

9. Accounts receivable (month’s equivalent)
 \[\text{Accounts receivable} = \frac{\text{accounts receivable at end of the fiscal year}}{\text{total annual billings/12}} \]

10. Staff/1,000 connections ratio
 \[\text{Staff/1,000 connections ratio} = \frac{\text{number of utility staff}}{\text{number of utility connections/1,000}} \]

Some utilities may have collection efficiency higher than 100%. This may indicate that total collections for the period included payment of bills for the previous period. Operating and maintenance costs used in the computations do not include depreciation and debt service.

Data on estimates of population served by house connections and by public taps were provided by the utilities. Normally, these two values are computed using the number of house connections and public taps multiplied by the corresponding average number of persons served by each type of connection. However, in a number of instances, the reliability of the average number of persons served became suspect when the resulting population served exceeded the total population in the area of responsibility.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword</td>
<td>iv</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>v</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>vi</td>
</tr>
<tr>
<td>Methodology</td>
<td>viii</td>
</tr>
<tr>
<td>Map</td>
<td>x</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xi</td>
</tr>
<tr>
<td>List of Tables and Figures</td>
<td>xiii</td>
</tr>
<tr>
<td>PART I – SUMMARY OF FINDINGS</td>
<td></td>
</tr>
<tr>
<td>Summary of Results for 20 Utilities</td>
<td>3</td>
</tr>
<tr>
<td>Comment and Analysis by Utility</td>
<td>4</td>
</tr>
<tr>
<td>Comment and Analysis by Indicator</td>
<td>8</td>
</tr>
<tr>
<td>Achieving 24/7 Supply – Best Practices in Water Utilities</td>
<td>11</td>
</tr>
<tr>
<td>General Conclusions</td>
<td>13</td>
</tr>
<tr>
<td>PART II – UTILITIES COMPARISONS (Figures and Tables)</td>
<td>15</td>
</tr>
<tr>
<td>Institutions</td>
<td></td>
</tr>
<tr>
<td>Names and Locations of Utilities</td>
<td>17</td>
</tr>
<tr>
<td>Size of Utility</td>
<td>17</td>
</tr>
<tr>
<td>Type of Water Utility</td>
<td>18</td>
</tr>
<tr>
<td>Capital Expenditure per Connection</td>
<td>18</td>
</tr>
<tr>
<td>Production</td>
<td></td>
</tr>
<tr>
<td>Production Volume</td>
<td>19</td>
</tr>
<tr>
<td>Storage Capacity</td>
<td>19</td>
</tr>
<tr>
<td>Production Metering</td>
<td>20</td>
</tr>
<tr>
<td>Service</td>
<td></td>
</tr>
<tr>
<td>Water Coverage</td>
<td>20</td>
</tr>
<tr>
<td>Water Availability</td>
<td>21</td>
</tr>
<tr>
<td>Water Use</td>
<td>21</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>22</td>
</tr>
<tr>
<td>Household Monthly Consumption</td>
<td>22</td>
</tr>
<tr>
<td>Household Monthly Bill</td>
<td>23</td>
</tr>
<tr>
<td>Management</td>
<td></td>
</tr>
<tr>
<td>Unaccounted For Water</td>
<td>23</td>
</tr>
<tr>
<td>Consumer Metering</td>
<td>24</td>
</tr>
<tr>
<td>Staff per 1,000 Connections</td>
<td>24</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>25</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>25</td>
</tr>
<tr>
<td>Management Salaries</td>
<td>26</td>
</tr>
<tr>
<td>Connection Fee for House Connection</td>
<td>26</td>
</tr>
<tr>
<td>Priority Needs of Utility</td>
<td>27</td>
</tr>
</tbody>
</table>
Tariffs
Domestic Tariff Structures - Group 1
(Bangalore, Indore, Rajkot, Vijayawada) 28
Domestic Tariff Structures - Group 2
(Chennai, Jamshedpur, Visakhapatnam, Nashik) 28
Domestic Tariff Structures - Group 3
(Chandigarh, Ahmedabad, Bhopal, Varanasi) 29
Domestic Tariff Structures - Group 4
(Coimbatore, Mumbai, Amritsar, Nagpur) 29
Operating Ratio 30
Accounts Receivable 30
Revenue Collection Efficiency 31

Operation and Maintenance
Annual Operation and Maintenance Costs 31
O&M Cost Components 32
Leaks Repaired 32
Meters Replaced 33
Water Quality Sampling 33
Complaints Received 34
New Connections 34

PART III - WATER UTILITY AND AREA PROFILES 35
Ahmedabad
Ahmedabad Municipal Corporation 36
Amritsar
Municipal Corporation, Amritsar 38
Bangalore
Bangalore Water Supply and Sewerage Board 40
Bhopal
Bhopal Municipal Corporation 42
Chandigarh
Municipal Corporation, Chandigarh 44
Chennai
Chennai Metropolitan Water Supply and Sewerage Board 46
Coimbatore
Coimbatore City Municipal Corporation 48
Indore
Indore Municipal Corporation 50
Jabalpur
Jabalpur Municipal Corporation 52
Jamshedpur
 Jamshedpur Utilities and Services Company Limited 54

Kolkata
 Kolkata Municipal Corporation 56

Mathura
 Mathura Municipal Council 58

Mumbai
 Municipal Corporation of Greater Mumbai 60

Nagpur
 Nagpur Municipal Corporation 62

Nashik
 Nashik Municipal Corporation 64

Rajkot
 Rajkot Municipal Corporation 66

Surat
 Surat Municipal Corporation 68

Varanasi
 Varanasi Jal Sansthan 70

Vijayawada
 Vijayawada Municipal Corporation 72

Visakhapatnam
 Greater Visakhapatnam Municipal Corporation 74

APPENDIXES 77

Appendix 1: Water Utility Questionnaire 79
Appendix 2: Suggested Evaluation Criteria for Utilities 86

TABLES

<table>
<thead>
<tr>
<th>Number</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Summary of Results for 20 Utilities</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Names and Locations of Utilities</td>
<td>17</td>
</tr>
<tr>
<td>3</td>
<td>Size of Utilities</td>
<td>17</td>
</tr>
<tr>
<td>4</td>
<td>Priority Needs of Utility</td>
<td>27</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>1</td>
<td>Type of Water Utility</td>
<td>18</td>
</tr>
<tr>
<td>2</td>
<td>Capital Expenditure Per Connection</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>Production Volume</td>
<td>19</td>
</tr>
<tr>
<td>4</td>
<td>Storage Capacity</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>Production Metering</td>
<td>20</td>
</tr>
<tr>
<td>6</td>
<td>Water Coverage</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>Water Availability</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>Water Use</td>
<td>21</td>
</tr>
<tr>
<td>9</td>
<td>Per Capita Consumption</td>
<td>22</td>
</tr>
<tr>
<td>10</td>
<td>Household Monthly Consumption</td>
<td>22</td>
</tr>
<tr>
<td>11</td>
<td>Household Monthly Bill</td>
<td>23</td>
</tr>
<tr>
<td>12</td>
<td>Unaccounted For Water</td>
<td>23</td>
</tr>
<tr>
<td>13</td>
<td>Consumer Metering</td>
<td>24</td>
</tr>
<tr>
<td>14</td>
<td>Staff per 1,000 Connections</td>
<td>24</td>
</tr>
<tr>
<td>15</td>
<td>Average Tariff</td>
<td>25</td>
</tr>
<tr>
<td>16</td>
<td>Unit Production Cost</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td>Management Salaries</td>
<td>26</td>
</tr>
<tr>
<td>18</td>
<td>Connection Fee for House Connection</td>
<td>26</td>
</tr>
<tr>
<td>19a</td>
<td>Domestic Tariff Structures - Group 1 (Bangalore, Indore, Rajkot,</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Vijayawada)</td>
<td></td>
</tr>
<tr>
<td>19b</td>
<td>Domestic Tariff Structures - Group 2 (Chennai, Jamshedpur,</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Visakhapatnam, Nashik)</td>
<td></td>
</tr>
<tr>
<td>19c</td>
<td>Domestic Tariff Structures - Group 3 (Chandigarh, Ahmedabad, Bhopal,</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Varanasi)</td>
<td></td>
</tr>
<tr>
<td>19d</td>
<td>Domestic Tariff Structures - Group 4 (Coimbatore, Mumbai, Amritsar,</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Nagpur)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Operating Ratio</td>
<td>30</td>
</tr>
<tr>
<td>21</td>
<td>Accounts Receivable</td>
<td>30</td>
</tr>
<tr>
<td>22</td>
<td>Revenue Collection Efficiency</td>
<td>31</td>
</tr>
<tr>
<td>23</td>
<td>Annual Operation and Maintenance Costs</td>
<td>31</td>
</tr>
<tr>
<td>24</td>
<td>O&M Cost Components</td>
<td>32</td>
</tr>
<tr>
<td>25</td>
<td>Leaks Repaired</td>
<td>32</td>
</tr>
<tr>
<td>26</td>
<td>Meters Replaced</td>
<td>33</td>
</tr>
<tr>
<td>27</td>
<td>Water Quality Sampling</td>
<td>33</td>
</tr>
<tr>
<td>28</td>
<td>Complaints Received</td>
<td>34</td>
</tr>
<tr>
<td>29</td>
<td>New Connections</td>
<td>34</td>
</tr>
</tbody>
</table>
PART I

SUMMARY OF FINDINGS
Table 1a: Summary of Results

<table>
<thead>
<tr>
<th></th>
<th>Ahmedabad</th>
<th>Amritsar</th>
<th>Bangalore</th>
<th>Bhopal</th>
<th>Chandigarh</th>
<th>Chennai</th>
<th>Coimbatore</th>
<th>Indore</th>
<th>Jabalpur</th>
<th>Jamshedpur</th>
<th>Average (20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Coverage (%)</td>
<td>74.5</td>
<td>75.7</td>
<td>92.9</td>
<td>83.4</td>
<td>100.0</td>
<td>89.3</td>
<td>76.1</td>
<td>77.3</td>
<td>75.2</td>
<td>74.4</td>
<td>81.2</td>
</tr>
<tr>
<td>Water Availability (hours)</td>
<td>2.0</td>
<td>11.0</td>
<td>4.5</td>
<td>1.5</td>
<td>12.0</td>
<td>5.0</td>
<td>3.0</td>
<td>0.75</td>
<td>4.0</td>
<td>6.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Consumption/Capita (lpcd)</td>
<td>171</td>
<td>86</td>
<td>74</td>
<td>72</td>
<td>147</td>
<td>87</td>
<td>109</td>
<td>87</td>
<td>139</td>
<td>203</td>
<td>123.3</td>
</tr>
<tr>
<td>Production/Population (m3/day/c)</td>
<td>0.168</td>
<td>0.213</td>
<td>0.185</td>
<td>0.182</td>
<td>0.332</td>
<td>0.131</td>
<td>0.286</td>
<td>0.108</td>
<td>0.222</td>
<td>0.808</td>
<td>0.244</td>
</tr>
<tr>
<td>Unaccounted for Water (%)</td>
<td>nd</td>
<td>57</td>
<td>45</td>
<td>nd</td>
<td>59</td>
<td>41</td>
<td>nd</td>
<td>14</td>
<td>13</td>
<td></td>
<td>31.8</td>
</tr>
<tr>
<td>Connections Metered (%)</td>
<td>3.0</td>
<td>4.0</td>
<td>95.5</td>
<td>0.0</td>
<td>79.0</td>
<td>3.5</td>
<td>100.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.9</td>
<td>24.5</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>1.43</td>
<td>1.36</td>
<td>0.80</td>
<td>2.82</td>
<td>1.36</td>
<td>0.44</td>
<td>0.82</td>
<td>5.33</td>
<td>1.68</td>
<td>0.62</td>
<td>1.63</td>
</tr>
<tr>
<td>Accounts Receivable (months)</td>
<td>8</td>
<td>5.6</td>
<td>7.1</td>
<td>3.6</td>
<td>nd</td>
<td>1.1</td>
<td>3</td>
<td>5.2</td>
<td>3</td>
<td>0.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Revenue Collection Efficiency (%)</td>
<td>67</td>
<td>69</td>
<td>112</td>
<td>178</td>
<td>94</td>
<td>152</td>
<td>75</td>
<td>89</td>
<td>75</td>
<td>100</td>
<td>99.5</td>
</tr>
<tr>
<td>Average Tariff (Rs/m3)</td>
<td>1.39</td>
<td>9.34</td>
<td>20.55</td>
<td>0.60</td>
<td>5.04</td>
<td>10.87</td>
<td>3.66</td>
<td>2.79</td>
<td>1.50</td>
<td>4.51</td>
<td>4.91</td>
</tr>
<tr>
<td>New Connection Fee (Rs)</td>
<td>100</td>
<td>950</td>
<td>1,740</td>
<td>1,500</td>
<td>530</td>
<td>1,930</td>
<td>3,000</td>
<td>2,500</td>
<td>1,984</td>
<td>300</td>
<td>1,584</td>
</tr>
<tr>
<td>Capital Expenditure/Connection (Rs)</td>
<td>427</td>
<td>331</td>
<td>787</td>
<td>39</td>
<td>754</td>
<td>10,080</td>
<td>954</td>
<td>353</td>
<td>864</td>
<td>971</td>
<td>1,591</td>
</tr>
<tr>
<td>Staff/1,000 Connections (ratio)</td>
<td>2.2</td>
<td>4.8</td>
<td>5.2</td>
<td>20.7</td>
<td>8.6</td>
<td>13.3</td>
<td>4.0</td>
<td>18.7</td>
<td>0.4</td>
<td>5.6</td>
<td>7.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Kolkata</th>
<th>Mathura</th>
<th>Mumbai</th>
<th>Nagpur</th>
<th>Nashik</th>
<th>Rajkot</th>
<th>Surat</th>
<th>Varanasi</th>
<th>Vijayawada</th>
<th>Visakhapatnam</th>
<th>Average (20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Coverage (%)</td>
<td>79.0</td>
<td>70.0</td>
<td>100.0</td>
<td>91.5</td>
<td>92.6</td>
<td>98.1</td>
<td>77.4</td>
<td>77.7</td>
<td>70.5</td>
<td>49.2</td>
<td>81.2</td>
</tr>
<tr>
<td>Water Availability (hours)</td>
<td>8.3</td>
<td>2.0</td>
<td>4.0</td>
<td>5.0</td>
<td>3.5</td>
<td>0.3</td>
<td>2.5</td>
<td>7.0</td>
<td>3.0</td>
<td>1.0</td>
<td>4.3</td>
</tr>
<tr>
<td>Consumption/Capita (lpcd)</td>
<td>130</td>
<td>nd</td>
<td>191</td>
<td>100</td>
<td>93</td>
<td>101</td>
<td>nd</td>
<td>147</td>
<td>158</td>
<td>124</td>
<td>123.3</td>
</tr>
<tr>
<td>Production/Population (m3/day/c)</td>
<td>0.246</td>
<td>0.160</td>
<td>0.246</td>
<td>0.267</td>
<td>0.248</td>
<td>0.146</td>
<td>0.188</td>
<td>0.217</td>
<td>0.220</td>
<td>0.305</td>
<td>0.244</td>
</tr>
<tr>
<td>Unaccounted for Water (%)</td>
<td>35</td>
<td>nd</td>
<td>13</td>
<td>52</td>
<td>60</td>
<td>23</td>
<td>nd</td>
<td>30</td>
<td>24</td>
<td>14</td>
<td>31.8</td>
</tr>
<tr>
<td>Connections Metered (%)</td>
<td>0.1</td>
<td>0.0</td>
<td>75.0</td>
<td>40.0</td>
<td>80.0</td>
<td>0.4</td>
<td>1.9</td>
<td>0.0</td>
<td>6.0</td>
<td>1.3</td>
<td>24.5</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>4.73</td>
<td>3.05</td>
<td>0.49</td>
<td>0.76</td>
<td>1.18</td>
<td>1.61</td>
<td>1.01</td>
<td>1.30</td>
<td>1.14</td>
<td>0.78</td>
<td>1.63</td>
</tr>
<tr>
<td>Accounts Receivable (months)</td>
<td>2.4</td>
<td>12.3</td>
<td>11.8</td>
<td>9.6</td>
<td>0.03</td>
<td>6.6</td>
<td>3.1</td>
<td>4.9</td>
<td>1.6</td>
<td>3.3</td>
<td>4.9</td>
</tr>
<tr>
<td>Revenue Collection Efficiency (%)</td>
<td>100</td>
<td>106</td>
<td>189</td>
<td>80</td>
<td>92</td>
<td>45</td>
<td>100</td>
<td>64</td>
<td>114</td>
<td>86</td>
<td>99.5</td>
</tr>
<tr>
<td>Average Tariff (Rs/m3)</td>
<td>1.13</td>
<td>0.62</td>
<td>4.60</td>
<td>6.60</td>
<td>4.32</td>
<td>5.07</td>
<td>1.66</td>
<td>3.17</td>
<td>2.18</td>
<td>8.55</td>
<td>4.91</td>
</tr>
<tr>
<td>New Connection Fee (Rs)</td>
<td>1,000</td>
<td>500</td>
<td>660</td>
<td>1,675</td>
<td>1,250</td>
<td>1,850</td>
<td>345</td>
<td>2,375</td>
<td>5,500</td>
<td>2,000</td>
<td>1,584</td>
</tr>
<tr>
<td>Capital Expenditure/Connection (Rs)</td>
<td>2,247</td>
<td>712</td>
<td>3,790</td>
<td>719</td>
<td>1,268</td>
<td>817</td>
<td>1,102</td>
<td>112</td>
<td>nd</td>
<td>3,891</td>
<td>1,591</td>
</tr>
<tr>
<td>Staff/1,000 Connections (ratio)</td>
<td>14.7</td>
<td>6.5</td>
<td>17.2</td>
<td>3.2</td>
<td>3.4</td>
<td>1.1</td>
<td>1.7</td>
<td>5.9</td>
<td>5.7</td>
<td>5.4</td>
<td>7.4</td>
</tr>
</tbody>
</table>

Summary of Results of 20 Utilities
COMMENT AND ANALYSIS BY UTILITY

Ahmedabad Municipal Corporation

Ahmedabad Municipal Corporation (AMC) provides water at 171 lpcd to its consumers at an average of 2 hours per day to 74.5% of the population in its area of responsibility. Production is not metered and only 3% of total connections are metered. Meters are being phased out. No reliable estimate of UFW can be obtained. While operating ratio at 0.96 shows billing can cover operations and maintenance costs, accounts receivable equivalent of 8 months require more efforts in collection. Average tariff of Rs1.39/m³ is just about able to cover production cost of Rs1.34/m³. Staff/1,000 connections ratio is good at 2.2, the fourth lowest. AMC needs to improve water availability and collection of its receivables. It should take serious efforts in measuring its production and service connections to determine its losses and reduce them as well. Water bills should also be based on actual consumption as a means to conserve water.

Municipal Corporation, Amritsar

Municipal Corporation Amritsar (MCA) provides water at 86 lpcd to its consumers at an average of 11 hours per day to 75.7% of the population in its area of responsibility. It has the second highest UFW at 57.4% among the utilities. Production is not metered and only 45% of commercial and industrial connections are metered, making UFW an estimate at best. Financial management needs improvement with operating ratio of 1.36 and accounts receivable of 5.6 months. Average tariff of Rs9.34/m³ should easily cover production cost but is hindered by its high NRW. Staff/1,000 connections ratio is better than average at 4.8. MCA needs to reduce its NRW and improve on water availability and quantity. It also needs to improve on its collection efforts. The utility should meter production and further improve metering of connections to account for use.

Bangalore Water Supply & Sewerage Board

Bangalore Water Supply and Sewerage Board (BWSSB) provides water at only 74 lpcd to its consumers at an average of 4–5 hours per day to 92.9% of the population in its area of responsibility. It has the fourth highest UFW at 45.1% among 14 utilities. Production is fully metered and 95.5% of total connections have functioning meters. Operating ratio is good at 0.8 but accounts receivable of 7.1 months are the fifth highest. Average tariff of Rs20.55/m³ is the highest; high UFW keeps the total revenues just enough to cover costs. Staff/1,000 connections ratio is just about the median at 5.2. BWSSB needs to reduce its NRW and improve on water availability. It also needs to improve on its collection efforts. It could further improve metering of connections to better account for use.

Bhopal Municipal Corporation

Bhopal Municipal Corporation (BMC) provides water at an estimated 72 lpcd to its consumers at an average of 1–2 hours per day to 83.4% of the population in its area of responsibility. UFW could not be computed because of inconsistencies in the production and consumption estimates in the absence of metering for both. BMC has the fourth highest operating ratio at 2.82 although accounts receivable of 3.6 months is better than average. Average tariff of Rs0.60/m³ is the lowest and could not cover production costs. Staff/1,000 connections ratio is the highest at 20.7. BMC needs to improve on water availability and staff productivity. It should consider charging the appropriate tariff to cover its expenses. Metering of production and connections are needed to better account for use.

Municipal Corporation, Chandigarh

Municipal Corporation Chandigarh (MMC) provides water at 147 lpcd to its consumers at an average of 12 hours per day to all of the population in its area of responsibility. UFW is 38.9%, which is the sixth highest. Production is not metered while 79% of service connections are effectively metered. Operating ratio of 1.36 is the median and better than average. No data were given for accounts receivable. Average tariff of Rs5.04/m³ is not enough to cover operating costs because of high UFW. Staff/1,000 connections ratio is also the sixth highest at 8.6. MMC is doing well in customer service but needs to reduce UFW to manageable levels. It should consider metering of production and connections to better account for use. The utility should also look into improving the productivity of its staff.
Chennai Metropolitan Water Supply & Sewerage Board

Chennai Metropolitan Water Supply and Sewerage Board (CMWSSB) provides water at 87 lpcd to its consumers at an average of 5 hours per day to 89.3% of the population in its service area. It has the fifth lowest UFW at 17.0%. However, while production is fully metered, only 3.5% of total connections are metered making UFW figure an estimate at best. Financial management is good, with the lowest operating ratio at 0.44 and accounts receivable equivalent of 1.1 months, the third lowest. Average tariff of Rs10.87/m³ can easily cover production cost. Staff/1,000 connections ratio is high at 13.3, the fifth highest. CMWSSB needs to increase water availability and staff productivity. It should also improve metering of service connections to account for use.

Coimbatore City Municipal Corporation

Coimbatore City Municipal Corporation (CCMC) provides water at 109 lpcd to its consumers at an average of 3 hours per day to 76.1% of the population in its area of responsibility. UFW is the fifth highest at 41.3% with both production and consumption fully metered, which gives an accurate measure of its losses. Financial management is good, with an operating ratio of 0.82 and accounts receivable at 3.0 months, the sixth lowest but can still be reduced. Average tariff of Rs3.66/m³ is enough to cover operating costs. Staff/1,000 connections ratio is fair at 4.0, which is about half of the average. CCMC needs to reduce its UFW and increase the available hours of its supply and coverage as well.

Indore Municipal Corporation

Indore Municipal Corporation (IMC) provides water at 87 lpcd to its consumers at an average of 45 minutes per day to 77.3% of the population in its area of responsibility. With both production and connections not metered, available production and consumption estimates do not give a credible UFW value. Operating ratio is highest at 5.33. Accounts receivable are about average at 5.2 months. Average tariff of Rs2.79/m³ is lower than the high production cost of Rs13.18/m³ because of high-cost power most probably for pumping. Staff/1,000 connections ratio is the second highest at 18.7. IMC will need a lot of improvement starting with reducing its operating expenses and improving collections. Water availability of less than 1 hour a day is not acceptable and should be improved. Staff productivity needs to be enhanced. Production and all connections need to be metered to allow billing based on use and to account for total use and losses.

Jabalpur Municipal Corporation

Jabalpur Municipal Corporation (JMC) provides water at 139 lpcd to its consumers at an average of 4 hours per day to 75.2% of the population in its area of responsibility. With both production and service connections not metered, UFW of 14.3% is, at best, an estimate. Operating ratio is 1.68 and accounts receivable equivalent is 3 months. Average tariff of Rs1.50/m³ is the fifth lowest and cannot cover operating expenses. Staff/1,000 connections ratio is lowest at 0.4. JMC needs to address its water availability, its low tariff, and operating ratio of more than 1. Production and all connections need to be metered to allow billing based on use and to account for total use and losses.

Jamshedpur Utilities and Services Company Limited

Jamshedpur Utilities and Services Company (JUSCO) provides water at 203 lpcd to its consumers at an average of 6 hours per day to 74.4% of the population in its area of responsibility. While production is metered, less than 1% of service connections are metered. UFW of 12.8% is the lowest. Financial management is very good, with operating ratio of 0.62 and accounts receivable of 0.3 month. Average tariff of Rs4.51/m³ is about average but covers expenses well. Staff/1,000 connections ratio is less than average at 5.6. JUSCO is operating well except for water availability. It can further improve by full metering of all service connections.

Kolkata Municipal Corporation

Kolkata Municipal Corporation (KMC) provides water at 130 lpcd to its consumers at an average of 8 hours per day to 79.0% of the population in its area of responsibility. UFW is estimated at a high 35%, with production not metered and less than 1% of service connections metered. Financial management needs improvement with the second highest operating ratio of 4.73 and...
accounts receivable of 2.4 months. Average tariff of Rs1.13/m3 is the third lowest, which cannot cover expenses at all. Staff/1,000 connections ratio is the fourth highest at 14.7. KMC needs to cover its expenses through appropriate tariffs and by charging domestic users for their use. It also needs to improve collection and water availability, and reduce its high UFW. Staff productivity should also be enhanced. Metering is necessary to account for water use and to determine the extent of losses.

Mathura Municipal Council

Mathura Municipal Council (MMC) provides water to its consumers at an average of 1–3 hours per day to 70% of the population in its area of responsibility. Both production and all service connections are not metered. Estimates given show consumption equal to production, giving unrealistic values for per capita consumption and UFW. Financial management needs improvement with the third highest operating ratio of 3.05 and accounts receivable of 12.3 months, which is the highest. Average tariff of Rs0.62/m3 is the second lowest, which could not cover expenses at all. Staff/1,000 connections ratio is better than average at 6.5. MMC needs to cover its expenses through appropriate tariffs. It also needs to improve collection and water availability. Metering is necessary to account for water use and to determine the extent of losses.

Municipal Corporation of Greater Mumbai

Municipal Corporation of Greater Mumbai (MCGM) provides water to its consumers at 191 lpcd at an average of 4 hours per day to all of the population in its area of responsibility. Production is metered and 75% of service connections have working meters. UFW of 13.6% is the second lowest. Financial management is mixed with very good operating ratio of 0.49 and accounts receivable of 12.3 months, which is the highest. Average tariff of Rs4.60/m3 covers expenses with low UFW. Staff/1,000 connections ratio is the third highest at 17.2. MCGM needs to improve collection and water availability. Full metering is necessary to account for water use and to determine the extent of losses if UFW is to be reduced.

Nagpur Municipal Corporation

Nagpur Municipal Corporation (NMC) provides water to its consumers at 100 lpcd at an average of 5 hours per day to 91.5% of the population in its area of responsibility. Production is metered and 40% of service connections have working meters. UFW of 51.9% is the third highest and should be reduced. While operating ratio is good at 0.76, accounts receivable of 9.6 months are the third highest. Average tariff of Rs6.60/m3 is the fifth highest and is covering expenses well. Staff/1,000 connections ratio is the fifth lowest at 3.2. NMC needs to exert efforts to reduce its UFW and improve collection and water availability. Full metering is necessary to account for water use and to determine the extent of losses if UFW is to be reduced.

Nashik Municipal Corporation

Nashik Municipal Corporation (NMC) provides water at 93 lpcd to its consumers at an average of 3–4 hours per day to 92.6% of the population in its area of responsibility. It has the highest UFW at 59.5% among the utilities. However, while production is fully metered, only 80% of total connections are metered, making UFW still an estimate. Financial management is mixed with an operating ratio of 1.18 and accounts receivable equivalent of less than a week. Average tariff of Rs4.32/m3 should be able to cover production cost but is hindered by its high NRW. Staff/1,000 connections ratio is good at 3.4 being the fifth lowest. NMC needs to reduce its NRW, and improve on water availability and its financial management, especially its operating ratio. It should meter production and further improve metering of service connections to account for use.

Rajkot Municipal Corporation

Rajkot Municipal Corporation (RMC) provides water at 101 lpcd to its consumers at an average of 20 minutes per day to 98.1% of the population in its area of responsibility. UFW is 23.5% with practically no metering for both production and service connections, making the UFW an estimate. Financial management needs improvement with an operating ratio of 1.61 and accounts receivable equivalent of 6.6 months. Average tariff of Rs5.07/m3 is not covering production cost. Staff/1,000 connections ratio is good at 1.1 being the second lowest. RMC needs to address its very low water availability, and high operating ratio and accounts receivable equivalent. It should meter production and
service connections to account for use and determine its losses to reduce UFW.

Surat Municipal Corporation

Surat Municipal Corporation (SMC) provides water at an average of 2–3 hours per day to 77.4% of the population in its area of responsibility. With practically no metering for both production and service connections, no estimates of UFW and average per capita consumption was made. Financial management needs improvement with an operating ratio of 1.01 and accounts receivable equivalent of 3.1 months. Average tariff of Rs1.66/m3 could not cover production cost. Staff/1,000 connections ratio is good at 1.7 being the third lowest. SMC needs to address its very low water availability and accounts receivable equivalent. It should meter production and service connections to account for use and determine its losses to reduce UFW.

Varanasi Jal Sansthan

Varanasi Jal Sansthan (VJS) provides water at 147 lpcd to its consumers at an average of 7 hours per day to 77.7% of the population in its area of responsibility. UFW is 30.0%, which is about average. Production is not metered and while 69% of service connections are metered, none of them are working. Operating ratio of 1.30 and accounts receivable equivalent of 4.9 months need improvement. Average tariff of Rs3.17/m3 seems not enough to cover production cost. Staff/1,000 connections ratio is good at 5.9. VJS needs to address its low water availability and further improve on its accounts receivable equivalent and operating ratio. It should meter production and service connections to account for use and determine its losses to reduce UFW. Lower-than-average coverage also needs to be addressed.

Vijayawada Municipal Corporation

Vijayawada Municipal Corporation (VMC) provides water at 158 lpcd to its consumers at an average of 2–4 hours per day to 70.5% of the population in its area of responsibility. UFW is 23.8% but production is not metered and only 6.0% of service connections have working meters. Financial management is mixed with an operating ratio of 1.14 and accounts receivable equivalent of 1.60 months, which is the fourth lowest. Average tariff of Rs2.18/m3 is not enough to cover production cost. Staff/1,000 connections ratio is good at 5.70, which is at the median. VMC needs to address its low water availability and reduce its operating ratio to less than about 0.75. It should meter production and service connections to account for use and determine its losses to reduce UFW. Lower-than-average coverage also needs to be addressed.

Greater Visakhapatnam Municipal Corporation

Greater Visakhapatnam Municipal Corporation (GVMC) provides water at 124 lpcd to its consumers at an average of only 1 hour per day to 49.2% of the population in its area of responsibility. UFW is 14.5% but production is not metered and only 1.3% of service connections have working meters. Financial management is good, with an operating ratio of 0.78 and accounts receivable equivalent of 3.3 months. Average tariff of Rs8.55/m3 is enough to cover production cost. Staff/1,000 connections ratio is fair at 5.4, which is at the median. GVMC needs to address its low water availability and population coverage, which is the lowest among the utilities. It should meter production and service connections to account for use and determine its losses to reduce UFW further.
COMMENT AND ANALYSIS BY INDICATOR

Water Supply Coverage (Average – 81.2%)
Two of the 20 utilities (Chandigarh and Mumbai) have 100% coverage. Four others—Rajkot (98.1%), Bangalore (92.9%), Nashik (92.6%), and Nagpur (91.5%)—have more than 90%. Visakhapatnam (49.2%) has the lowest followed by Mathura (70%), Vijayawada (70.5%), Jamshedpur (74.4%), and Ahmedabad (74.5%). The average is 81.2%, with 12 utilities falling below 80% coverage. It is no surprise that Visakhapatnam also has the third lowest availability at 1 hour (h) supply per day. It is noted that those with the highest coverage also have the highest tariffs, indicating that people are willing to pay for piped water.

Water Availability (Average – 4.3 hours/day)
It is alarming that the longest available supply is only 12 hours a day, Chandigarh, followed by Amritsar (11 hours), Kolkata (8.3 hours), Varanasi (7 hours), and Jamshedpur (6 hours). Average for all utilities is only 4.3 h supply per day. The shortest supply duration per day belongs to Rajkot (0.33 hour), followed by Indore (0.75 hour), Visakhapatnam (1.0 hour), and Bhopal (1.5 hours). Supplies of less than 24 hours pose not only a risk to health but also affect metering and the ability to reduce UFW levels. The urban poor are the most affected as they cannot afford the cost of dual systems with individual storage and pumping systems in the home.

Consumption (Average – 123.3 lpcd)
Consumption of about 100–120 liters per capita per day (lpcd) seems reasonable. It is high enough to provide for health and hygiene requirements and low enough to help conserve resources. The high-consumption areas are Jamshedpur (203 lpcd), Mumbai (191 lpcd), Ahmedabad (171 lpcd), and Vijayawada (158 lpcd). By contrast, there are a number of low-consumption areas, such as Bhopal (72 lpcd), Bangalore (74 lpcd), Amritsar (86 lpcd), and Indore and Chennai (87 lpcd). Indore and Chennai have source constraints. Amritsar and Bangalore have high levels of unaccounted for water (UFW).

Production Per Person (Average – 0.244 m3/d/person)
This indicator measures overall efficiency of water resource use. The low figures of Indore (0.108 m3/day/c), Chennai (0.131 m3/day/c), Rajkot (0.146 m3/day/c), Mathura (0.160 m3/day/c), and Ahmedabad (0.168 m3/day/c) reflect a shortage of water resources. The high figures are in Jamshedpur (0.808 m3/day/c), Chandigarh (0.332 m3/day/c), Visakhapatnam (0.305 m3/day/c), Coimbatore (0.286 m3/day/c), Nagpur (0.267 m3/day/c), and Nashik (0.248 m3/day/c). Jamshedpur and Coimbatore have high demand for nondomestic water; Nashik and Nagpur both have high UFW.

Unaccounted For Water (Average – 31.8%)
The best performers in terms of low UFW are Jamshedpur (12.8%), Mumbai (13.6%), Jabalpur (14.3%), Visakhapatnam (14.5%), and Chennai (17.0%). The worst performers are Nashik (59.6%), Amritsar (57.4%), Nagpur (51.9%), and Bangalore (45.1%). Metering is a critical component for determining UFW. Only Coimbatore claims to have both production and service connections fully metered. Bangalore and Mumbai have fully production metering but consumption metering are 95.5% and 75.0%, respectively. Four other utilities have fully metered production but virtually nil to only 40% consumption metering. Hence, UFW figures should be interpreted with caution. Given low coverage and low water availability in some utilities, more must be done to reduce UFW levels. This includes 100% metering of production and consumption, repair of visible leaks, elimination of illegal connections, and identification and repair of invisible leaks.

Connections Metered (Average – 24.5%)
Metering is important to fully account for water production and consumption in reducing UFW. Consumption metering is also important for consumers to pay for what they are using, which could help in promoting prudent use of water. Those with high levels of consumption metering are Coimbatore (100%), Bangalore (95.5%),
Nashik (80%), Chandigarh (79%), and Mumbai (75%). Except for Nagpur (40%), the rest have less than 10% metering, with Bhopal, Jabalpur, Mathura, and Varanasi with no metering at all. For Indian water utilities, this is perhaps the single most important area requiring improvement.

Operating Ratio (Average – 1.63)

A low operating ratio means revenues from tariffs cover the operation and maintenance costs comfortably. If we include debt service and depreciation, it will show whether the utility also has the capacity to expand coverage through tariffs without the grants given by most urban local bodies (ULBs). A ratio above 1 means they do not cover these costs. Only one third of the utilities, including Chennai (0.44), Mumbai (0.49), Jamshedpur (0.62), Nagpur (0.76), Visakhapatnam (0.78), Bangalore (0.80), and Coimbatore (0.82), are able to cover their costs. The worst performers requiring much improvement are Indore (5.33), Kolkata (4.73), Mathura (3.05), and Bhopal (2.82), together with nine others with operating ratios of more than 1.0.

Accounts Receivable (Average – 4.9 months)

This indicator is a good measure of the effectiveness of a utility in collecting its receivables or bills. In this case, the receivables are expressed in equivalent of the utility’s average monthly billing. For small utilities, accounts receivable representing less than 2 months of its average billing is manageable; for larger utilities, this could be 3 months. But when it has risen to 6 months or more, it has gone out of hand. Six utilities having accounts receivable of more than 6 months are Mathura (12.3 months), Mumbai (11.8 months), Nagpur (9.6 months), Ahmedabad (8.0 months), Bangalore (7.1 months), and Rajkot (6.6 months). The good performers include Nashik (0.03 month), Jamshedpur (0.3 month), Chennai (1.1 months), and Vijayawada (1.6 months).

Collection Efficiency (Average – 99.5%)

This indicator, along with average tariff, operating ratio, and accounts receivable, impacts on the financial health of a utility. About nine of the utilities have collection efficiencies of 95% or higher. The worst performers (with less than 80% collection efficiencies) are Rajkot (45%), Varanasi (64%), Ahmedabad (67%), Amritsar (69%), and Coimbatore and Jabalpur (75%). Rajkot and Ahmedabad also have high accounts receivable.

These utilities should improve their collection effort and encourage consumers to pay their bills on time. Six utilities—Mumbai (189%), Bhopal (178%), Chennai (152%), Vijayawada (114%), Bangalore (112%), and Mathura (106%)—have collection efficiencies of more than 100%, suggesting that past years’ arrears are being collected.

Average Tariff (Average – Rs4.91/m³)

The average tariff is a good measure of the financial discipline of a utility and its ability to cover operational costs with revenues from tariffs. The water utilities with high average tariffs are Bangalore (Rs20.55/m³), Chennai (Rs10.87/m³), Amritsar (Rs9.34/m³), Visakhapatnam (Rs8.55/m³), Nagpur (Rs6.60/m³), Rajkot (Rs5.07/m³), and Chandigarh (Rs5.04/m³). Despite their high average tariffs, Amritsar and Chandigarh could not cover their operational costs because of high UFW. Those who charge the lowest tariffs are Bhopal (Rs0.60/m³), Mathura (Rs0.62/m³), Kolkata (Rs1.13/m³), Ahmedabad (Rs1.39/m³), and Jabalpur (Rs1.50/m³). Kolkata is not charging its domestic users, resulting in high operating ratio (as with Bhopal and Mathura).

New Connection Fee (Average – Rs1,584)

Apart from reasonable connection fee, allowing payments by installment can assist lower-income households to gain access to direct connection to their homes with significant benefits to their welfare. During the workshop presenting the results of the study, participants from the utilities agreed that Rs2,500 is a reasonable average connection fee. Only Jabalpur and Vijayawada allowed payment by installment over 12 months while the rest required payment prior to connection. However, only Vijayawada (Rs5,500) and Coimbatore (Rs3,000) have connection fees above Rs2,500. Seven utilities have less than Rs1,000 connection fee starting with the lowest, Ahmedabad (Rs100), Jamshedpur (Rs300), Surat (Rs345), Mathura (Rs500), Chandigarh (Rs530), Mumbai (Rs660), and Amritsar (Rs950).
Average Capital Expenditure Per Connection
(Average – Rs1,591)
Among the utilities with the highest average annual expenditure per connection for capital development are Chennai (Rs10,080), Visakhapatnam (Rs3,892), Mumbai (Rs3,791), Kolkata (Rs2,248), Nashik (Rs1,269), and Surat (Rs1,102). Mumbai, Nashik, and Chennai are among those with the highest coverage while Visakhapatnam has the lowest coverage and is just catching up. Bhopal (Rs39), Varanasi (Rs113), Amritsar (Rs332), Indore (Rs354), and Ahmedabad (Rs427) are five utilities that have invested less than Rs500 per connection per year over the last 5 years. It is not surprising that Amritsar and Ahmedabad, with their low level of capital investment, are among those with the lowest coverage.

Staff Per 1,000 Connections Ratio
(Average – 7.4)
This indicator is generally used to measure the efficient use of human resources in a utility as manifested by low staff/1,000 connection ratio. However, two thirds of the utilities have contracted out some of its operations. Those with high staff/1,000 connections ratio are Bhopal (20.7), Indore (18.7), Mumbai (17.2), Kolkata (14.7), Chennai (13.3), and Chandigarh (8.6), with Kolkata and Chandigarh contracting out some services. The utilities with the lowest ratio are Jabalpur (0.4), Rajkot (1.1), Surat (1.7), Ahmedabad (2.2), Nagpur (3.2), and Nashik (3.4). Of this group, only Nagpur and Jabalpur have not contracted out services.
Achieving 24/7 Supply – Best Practices in Water Utilities

Introduction
Providing 24-hour water supply 7 days a week to India's growing urban population is possible with political will from the Government and support from the stakeholders, particularly the consumers and civil society. It will require solving chronic inefficiencies in the urban water supply and sanitation sector, which include limited coverage and poor service quality. Previous studies pointed to the underlying problems related to performance of water utilities, such as poor and inadequate investments, poor operation and maintenance (O&M) practices, high nonrevenue water, uneconomic tariff structure and levels, and poor financial management. Poor service delivery is ascribed to inefficient and financially weak utilities that continue to operate without sufficient autonomy, the right incentives, and the necessary accountability to consumers.

Less-than-24-hour water supply exposes consumers to high health risk from contamination entering distribution pipes during vacuum conditions created when water is absent. It makes accurate measurement of consumption impossible. There is evidence that more water is consumed with intermittent supply because people leave their taps open to fill storage, which can often then overflow to waste. The poor suffer the most as they cannot afford the dual system of individual storage and pumping that provides 24-hour supply to the home of the richer segment of the population.

A significant and sustainable improvement in the performance of water utilities is critical to improving services particularly in the areas of customer satisfaction, water resources management, and financial and human resources management.

Customer Satisfaction
Customer satisfaction can be measured in terms of coverage, water availability, and average daily consumption.

Coverage
Many Indian water utilities provide water supply through house connections, public taps, wells with hand pumps, and tankers. The ideal should be provision through pipe connection, which minimizes the risks of contamination from fetching and handling from point sources. Coverage can be increased through appropriate tariffs to finance expansion, as well as through connection fees that can be paid in installments. The urban poor can be connected with lifeline rates and reduced connection fees. Schemes used by small-scale service providers in many parts of Asia for daily billing and collection and distribution for the urban poor should also be explored. Timely redressal of complaints is important in keeping customers satisfied.

Consumption
The average daily consumption of 123 lpcd is sufficient for health requirements and low enough so as not to be wasteful. However, with less than 25% metering of service connections, assessing the actual amount consumed by users is difficult. This is further aggravated by the lack of information on the actual number of people that the utilities serve. While the number of connections is known, the average number of persons that each type of connection serves is not known. This information is not difficult to obtain considering that bill collectors have regular contact with consumers.

Availability
The number of hours of supply per day is the most important service indicator to consumers along with average pressure which, together, determines how much consumers ultimately get from the distribution network. A 24-hour supply is possible regardless of the size of utilities. Many large utilities divide their areas into smaller business units for managers to operate at the lowest possible level and be held...
accountable for the efficiency of their operations. The costs to the utility and to consumers are less with 24-hour supply. Hydraulics dictate that delivering 123 lpcd over 1 hour will require larger pipes compared to spreading this out over 24 hours. There are costs to wastage and health risks with intermittent supply. The total cost borne by households to get 24-hour supply in the home from intermittent supply by the utility will be more than enough to have the necessary infrastructure for providing 24-hour supply delivered to homes.

Water Resources Management

Unaccounted For Water (UFW)

The single most important parameter to indicate performance under water resources management is unaccounted for water (UFW). However, it is equally important that UFW is obtained through accurate measurement of production and consumption with no less than 100% metering of all sources of production and all service connections. Once the levels of UFW at the different areas of the distribution system are determined, the necessary measures can then be taken to reduce losses from all sources to reasonable levels. These include leak detection and control, flushing out illegal connections, meter calibration and replacement, meter protection, training on meter reading to minimize human error, proper supervision during construction, etc. The cost of reducing UFW and the resulting revenue water could be less than the cost of developing new sources for the same amount of recovered losses. At least, it could postpone the development of new sources.

Financial Management

The most important measures or indicators of financial management are operating ratio, accounts receivable, and collection efficiency where Indian water utilities are performing poorly. Major factors include tariffs, operating expenses, revenues, and payment arrears.

Operating Ratio

Operating ratio is defined by the operating expenses (excluding debt service and depreciation) and operating revenues. A healthy utility should have an operating ratio of about 0.75. The average for Indian water utilities is 1.63, which requires huge subsidies from local governments or urban local bodies. A first step in getting the finances of a utility in order is to ring-fence the water utility operations. This will allow management of finances purely from the water utility’s operations. It will require increasing its revenue base, meaning more connections. Tariff level is the most important component of revenues apart from the number of consumers. Reducing the operating ratio will also require reducing operating expenses, which means increasing staff productivity while reducing energy costs and other expenses. For utilities with high energy cost component, energy audits show that using variable-speed motors to suit supply to demand is a way of reducing electric bills. Timely leak interventions reduce costs and losses as well.

Accounts Receivable

Accounts receivable equivalent in months is a measure of collection period or the time it takes to collect water bills. While 2–3 months is reasonable, the average for the Indian water utilities is 4.9 months, with 60% having it greater than 3.0 months. Efficient utilities resort to measures, such as strict disconnection policies against delinquent consumers, information campaigns, collection reminders, incentives and penalty systems for early or late payments, and providing more customer-friendly environment for receiving payments.

Tariffs

In setting tariffs, the first consideration must be a consistent transparent tariff policy endorsed by the Government. Government subsidies to the sector, as well as so-called “cross-subsidies” within the sector, need to be clearly outlined. Demand management through higher rates for high consumption and a lifeline rate where there are urban poor should be considered in the tariff structure. Mechanism for tariff adjustment must be defined. Ideally, an independent regulatory authority to monitor and approve tariffs must be established. Water utilities need to generate from tariffs a cash flow that will cover O&M costs, debt servicing (both capital repayment and interest), and provide a contribution to capital development.
Human Resources Management

Staff Productivity

The most common measure for human resources management is staff/1,000 connections. The most important resources of a utility are its management and staff. The 7.4 staff ratio can still be improved to 5.0, which is the average ratio for developing countries in an earlier Water and Sanitation (WSP) World Bank study. This can be done through training of staff in different aspects of operations, such as pumping, treatment plant operations, billing and collection, leak control and management, etc. Staff training is a dilemma for small utilities that are left on their own upon turnover of new facilities. Problems normally start occurring once operations start, and this is when most new utilities are vulnerable. This is where they need technical assistance that is nowhere available in most cases. Making regular training programs and advisory services available to utility operators would be ideal. Computerization and management information systems are required for more efficient operations and effective day-to-day management decisions.

Accountability

Water utilities that are required to account for their performance will most likely perform better and seek ways to improve their operations. A simple, annual report (with audited financial statements and the performance indicators mentioned in this section) that is made available to the general public will be useful to both the water utility and its consumers, as well as other stakeholders. Such report should be published and made available within 6–12 months from the end of the fiscal year.

General Conclusions

The data presented in this book give a comprehensive picture of the performance of 20 water utilities in India. The performance indicators were derived from information provided by the participating utilities. It should be emphasized that the reliability of a number of important indicators, such as per capita consumption, UFW, and finance indicators related to consumption and billing, are suspect in the absence of full metering and should be used with caution. Any performance improvement program will have to improve measurement and recording of operational information as a first step in getting a complete assessment of any water utility’s overall performance. Benchmarking as a management tool to attain operational efficiency will work only with reliable and accurate information.

Overall, service to consumers is mixed with good coverage and reasonable consumption. Availability, however, is dismal, with consumers getting water supply at a daily average of about 4 hours only. While average UFW is reasonable, the figures derived are not reliable in the absence of full metering of both production and service connections. Financial management needs improvement in collecting bills and collecting them on time, setting the appropriate tariffs, and reducing O&M costs. Staff productivity needs to be enhanced through capacity-building programs, including training in utility operations and management.

Attention needs to be focused on the following:

- Advocacy for more investment in the sector and greater coverage;
- 24-hour water supply;
- 100% metering of both production and consumption;
- Management of water losses by keeping UFW in check, appropriate pricing, and public awareness;
- Phasing out public taps that provide free water;
- Improved billing and collection efficiency;
- Appropriate tariffs to cover O&M costs and costs of expansion;
• Investment in capacity building for staff and management;
• Regular monitoring of performance through appropriate management information systems; and
• Support for services to the urban poor through lifeline rates and installment payment of connection fees.

Performance improvement for each utility will have to be based on the indicators and their operating environment as described in the utility and area profiles in this data book. Additional information will be required in developing performance improvement plans. Utilities are encouraged to learn from those who are performing well by identifying them and communicating with them using the contact details in this book.
PART II

UTILITIES COMPARISONS

(Figures and Tables)
Table 2: Names and Locations of Utilities

<table>
<thead>
<tr>
<th>City</th>
<th>State</th>
<th>Area Population</th>
<th>Year</th>
<th>Name of Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmedabad</td>
<td>Gujarat</td>
<td>4,491,000</td>
<td>2005–2006</td>
<td>Ahmedabad Municipal Corporation</td>
</tr>
<tr>
<td>Bangalore</td>
<td>Karnataka</td>
<td>5,361,500</td>
<td>2005–2006</td>
<td>Bangalore Water Supply and Sewerage Board</td>
</tr>
<tr>
<td>Bhopal</td>
<td>Madhya Pradesh</td>
<td>1,437,000</td>
<td>2005–2006</td>
<td>Bhopal Municipal Corporation</td>
</tr>
<tr>
<td>Chandigarh</td>
<td>UT Chandigarh</td>
<td>1,150,000</td>
<td>2005–2006</td>
<td>Municipal Corporation, Chandigarh</td>
</tr>
<tr>
<td>Chennai</td>
<td>Tamil Nadu</td>
<td>5,320,000</td>
<td>2005–2006</td>
<td>Chennai Metropolitan Water Supply & Sewerage Board</td>
</tr>
<tr>
<td>Coimbatore</td>
<td>Tamil Nadu</td>
<td>994,000</td>
<td>2005–2006</td>
<td>Coimbatore City Municipal Corporation</td>
</tr>
<tr>
<td>Indore</td>
<td>Madhya Pradesh</td>
<td>2,200,000</td>
<td>2005–2006</td>
<td>Indore Municipal Corporation</td>
</tr>
<tr>
<td>Jabalpur</td>
<td>Madhya Pradesh</td>
<td>1,050,000</td>
<td>2005–2006</td>
<td>Jabalpur Municipal Corporation</td>
</tr>
<tr>
<td>Kolkata</td>
<td>West Bengal</td>
<td>3,998,000</td>
<td>2005–2006</td>
<td>Kolkata Municipal Corporation</td>
</tr>
<tr>
<td>Mumbai</td>
<td>Maharashtra</td>
<td>13,000,000</td>
<td>2005–2006</td>
<td>Municipal Corporation of Greater Mumbai</td>
</tr>
<tr>
<td>Nashik</td>
<td>Maharashtra</td>
<td>1,350,000</td>
<td>2005–2006</td>
<td>Nashik Municipal Corporation</td>
</tr>
<tr>
<td>Rajkot</td>
<td>Gujarat</td>
<td>980,000</td>
<td>2005–2006</td>
<td>Rajkot Municipal Corporation</td>
</tr>
<tr>
<td>Surat</td>
<td>Gujarat</td>
<td>2,954,000</td>
<td>2005–2006</td>
<td>Surat Municipal Corporation</td>
</tr>
<tr>
<td>Varanasi</td>
<td>Uttar Pradesh</td>
<td>1,489,000</td>
<td>2005–2006</td>
<td>Varanasi Jal Sansthan</td>
</tr>
<tr>
<td>Vijayawada</td>
<td>Andra Pradesh</td>
<td>675,000</td>
<td>2005–2006</td>
<td>Vijayawada Municipal Corporation</td>
</tr>
<tr>
<td>Visakhapatnam</td>
<td>Andra Pradesh</td>
<td>920,000</td>
<td>2005–2006</td>
<td>Greater Visakhapatnam Municipal Corporation</td>
</tr>
</tbody>
</table>

Table 3: Size of Utilities

<table>
<thead>
<tr>
<th>Utility</th>
<th>Production (m3/day)</th>
<th>Utility</th>
<th>Number of Connections</th>
<th>Number of Staff</th>
<th>Utility</th>
<th>People Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mumbai</td>
<td>3,200,000</td>
<td>Ahmedabad</td>
<td>556,734</td>
<td>Mumbai</td>
<td>8,371</td>
<td>Mumbai 13,000,000</td>
</tr>
<tr>
<td>Kolkata</td>
<td>971,560</td>
<td>Bangalore</td>
<td>486,850</td>
<td>Chennai</td>
<td>4,578</td>
<td>Bangalore 4,978,330</td>
</tr>
<tr>
<td>Bangalore</td>
<td>923,090</td>
<td>Chennai</td>
<td>344,079</td>
<td>Kolkata</td>
<td>3,866</td>
<td>Kolkata 3,948,000</td>
</tr>
<tr>
<td>Ahmedabad</td>
<td>623,836</td>
<td>Surat</td>
<td>310,836</td>
<td>Indore</td>
<td>2,979</td>
<td>Ahmedabad 3,716,624</td>
</tr>
<tr>
<td>Chennai</td>
<td>623,836</td>
<td>Mumbai</td>
<td>309,226</td>
<td>Bangalore</td>
<td>2,510</td>
<td>Surat 2,954,000</td>
</tr>
<tr>
<td>Nagpur</td>
<td>608,220</td>
<td>Nagpur</td>
<td>265,231</td>
<td>Bhopal</td>
<td>2,171</td>
<td>Chennai 2,364,725</td>
</tr>
<tr>
<td>Surat</td>
<td>554,685</td>
<td>Kolkata</td>
<td>262,839</td>
<td>Ahmedabad</td>
<td>1,200</td>
<td>Nagpur 2,277,990</td>
</tr>
<tr>
<td>Chandigarh</td>
<td>381,280</td>
<td>Rajkot</td>
<td>193,879</td>
<td>Chandigarh</td>
<td>1,196</td>
<td>Indore 1,700,000</td>
</tr>
<tr>
<td>Jamshedpur</td>
<td>370,110</td>
<td>Indore</td>
<td>159,104</td>
<td>Nagpur</td>
<td>856</td>
<td>Bhopal 1,418,460</td>
</tr>
<tr>
<td>Nashik</td>
<td>310,000</td>
<td>Chandigarh</td>
<td>139,300</td>
<td>Varanasi</td>
<td>676</td>
<td>Nashik 1,250,000</td>
</tr>
<tr>
<td>Varanasi</td>
<td>270,000</td>
<td>Amritsar</td>
<td>127,786</td>
<td>Amritsar</td>
<td>617</td>
<td>Varanasi 1,243,000</td>
</tr>
<tr>
<td>Bhopal</td>
<td>258,000</td>
<td>Nashik</td>
<td>127,562</td>
<td>Surat</td>
<td>532</td>
<td>Chandigarh 1,150,000</td>
</tr>
<tr>
<td>Visakhapatnam</td>
<td>228,451</td>
<td>Varanasi</td>
<td>114,907</td>
<td>Visakhapatnam</td>
<td>466</td>
<td>Rajkot 983,000</td>
</tr>
<tr>
<td>Coimbatore</td>
<td>228,400</td>
<td>Coimbatore</td>
<td>113,762</td>
<td>Coimbatore</td>
<td>452</td>
<td>Amritsar 804,455</td>
</tr>
<tr>
<td>Indore</td>
<td>183,000</td>
<td>Bhopal</td>
<td>105,012</td>
<td>Vijayawada</td>
<td>445</td>
<td>Coimbatore 799,000</td>
</tr>
<tr>
<td>Jabalpur</td>
<td>175,115</td>
<td>Visakhapatnam</td>
<td>85,668</td>
<td>Nashik</td>
<td>440</td>
<td>Jabalpur 790,000</td>
</tr>
<tr>
<td>Amritsar</td>
<td>171,005</td>
<td>Vijayawada</td>
<td>78,298</td>
<td>Jamshedpur</td>
<td>298</td>
<td>Visakhapatnam 750,000</td>
</tr>
<tr>
<td>Rajkot</td>
<td>143,836</td>
<td>Jabalpur</td>
<td>46,260</td>
<td>Rajkot</td>
<td>211</td>
<td>Vijayawada 600,000</td>
</tr>
<tr>
<td>Vijayawada</td>
<td>131,833</td>
<td>Jamshedpur</td>
<td>38,800</td>
<td>Mathura</td>
<td>160</td>
<td>Jamshedpur 458,000</td>
</tr>
<tr>
<td>Mathura</td>
<td>38,172</td>
<td>Mathura</td>
<td>24,643</td>
<td>Jabalpur</td>
<td>17</td>
<td>Mathura 238,000</td>
</tr>
</tbody>
</table>
Figure 3: Production Volume

Figure 4: Storage Capacity
Figure 5: Production Metering

![Bar chart showing production metering percentage and number of utilities for various cities in India.]

Figure 6: Water Coverage

![Bar chart showing water coverage percentage and percent of total population for various cities in India.]

20 2007 Benchmarking and Data Book of Water Utilities in India
Figure 7: Water Availability

Utilities
- Rajkot
- Indore
- Visakhapatnam
- Bhopal
- Mathura
- Ahmedabad
- Surat
- Vijayawada
- Coimbatore
- Nashik
- Mumbai
- Jabalpur
- Bangalore
- Nagpur
- Chennai
- Jamshedpur
- Varanasi
- Kolkata
- Amritsar
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpur
- Chennai
- Ahmedabad
- Mathura
- Visakhapatnam
- Indore
- Surat
- Coimbatore
- Nashik
- Mumbai
- Jamshedpu

Average Number of Hours Per Day

Figure 8: Water Use

Utilities Comparison - Service
Figure 13: Consumer Metering

![Bar chart showing the percentage of connections metered across different cities in India. The chart categorizes cities into four groups based on their consumer metering percentages: <1%, 10-1%, 99-4%, and 100%. The cities are listed on the x-axis, and the number of utilities with each percentage is shown on the y-axis.

Figure 14: Staff Per 1,000 Connections

![Bar chart showing the staff per 1,000 connections for various utilities in India. The utilities are listed on the y-axis, and the staff per 1,000 connections are represented on the x-axis. The utilities are ranked from highest to lowest staff per 1,000 connections.]
Figure 17: Management Salaries

Figure 18: Connection Fee for House Connection
<table>
<thead>
<tr>
<th>Utility</th>
<th>Priority Needs</th>
<th>Priority Needs</th>
<th>Priority Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmedabad</td>
<td>Regular, adequate, safe water supply to citizens</td>
<td>All water supplies must be surface water</td>
<td>Water audit</td>
</tr>
<tr>
<td>Amritsar</td>
<td>Institutional improvement</td>
<td>Access survey and management</td>
<td>Leak detection and control</td>
</tr>
<tr>
<td>Bangalore</td>
<td>Reduce unaccounted for water</td>
<td>Reuse water for potable uses and industries</td>
<td>Ensure no flow of sewage in storm water drains</td>
</tr>
<tr>
<td>Bhopal</td>
<td>24-hour water supply to all</td>
<td>Detect leak to control UFW</td>
<td>Meeting the future needs of growing population</td>
</tr>
<tr>
<td>Chandigarh</td>
<td>Water supply</td>
<td>Sewage treatment plant</td>
<td>Storm water drainage</td>
</tr>
<tr>
<td>Chennai</td>
<td>Water conservation</td>
<td>Safe disposal of sewage</td>
<td>Source identification and development</td>
</tr>
<tr>
<td>Coimbatore</td>
<td>Nonrevision of tariffs in nearly 10 years</td>
<td>Shortage of staff with ban on fresh recruitments</td>
<td>Limited role of private sector</td>
</tr>
<tr>
<td>Indore</td>
<td>Augmentation of water supply system capacity</td>
<td>Increase in revenue to make system sustainable</td>
<td>Upgrade existing distribution system</td>
</tr>
<tr>
<td>Jabalpur</td>
<td>Leakage control</td>
<td>Zoning of water distribution system</td>
<td>Collection improvement – realization of cess</td>
</tr>
<tr>
<td>Jamshedpur</td>
<td>Increase service coverage</td>
<td>24 x 7 supply with 100% metering</td>
<td>Reduction of nonrevenue water</td>
</tr>
<tr>
<td>Kolkata</td>
<td>Water supply network management</td>
<td>Management of UFW reduction</td>
<td>24 x 7 water supply with 100% metering</td>
</tr>
<tr>
<td>Mathura</td>
<td>Master plan for distribution system</td>
<td>Rehabilitation in core of city and expansion</td>
<td>Metering and computerization for billing and collection</td>
</tr>
<tr>
<td>Mumbai</td>
<td>Reduce UFW</td>
<td>Distribution management from service reservoir to consumer end</td>
<td>GIS-based network interlinked with SCADA</td>
</tr>
<tr>
<td>Nagpur</td>
<td>Reduce raw water losses</td>
<td>Rehabilitation and upgrade existing infrastructure</td>
<td>Upgrade and improvement of existing distribution network</td>
</tr>
<tr>
<td>Nashik</td>
<td>Full coverage in terms of population and area</td>
<td>Reduction in water losses</td>
<td>Augmentation of water supply systems for year 2026 requirement</td>
</tr>
<tr>
<td>Rajkot</td>
<td>Source augmentation</td>
<td>Minimize leaks</td>
<td>100% cost recovery</td>
</tr>
<tr>
<td>Surat</td>
<td>Reducing pollution of its present source of raw water</td>
<td>Exploring alternate sources of water</td>
<td>Rationalize water tariff for sustainability</td>
</tr>
<tr>
<td>Varanasi</td>
<td>Revenue – billing and collection</td>
<td>Regular supply of potable water to citizens</td>
<td>Upgrade, extension, and improved maintenance of existing water supply</td>
</tr>
<tr>
<td>Vijayawada</td>
<td>Every house to be provided with a tap</td>
<td>Accountability</td>
<td>Decrease in NRW</td>
</tr>
<tr>
<td>Visakhapatnam</td>
<td>Water supply improvement in quantity and quality</td>
<td>Refurbish and extend the distribution system at uniform service levels</td>
<td>100% coverage with 24 x 7 supply</td>
</tr>
</tbody>
</table>
Figure 19a: Domestic Tariff Structures

Figure 19b: Domestic Tariff Structures
Figure 19c: Domestic Tariff Structures

Figure 19d: Domestic Tariff Structures
Figure 20: Operating Ratio

Figure 21: Accounts Receivable
Figure 22: Revenue Collection Efficiency

Figure 23: Annual Operation and Maintenance Costs
Figure 24: O&M Cost Components

Figure 25: Leaks Repaired Annually
Figure 26: Meters Replaced Annually

Figure 27: Water Quality Sampling
Figure 28: Complaints Received Annually

Utilities

- Nashik
- Indore
- Jabalpur
- Amritsar
- Bhopal
- Chandigarh
- Coimbatore
- Rajkot
- Surat
- Varanasi
- Visakhapatnam
- Vijayawada
- Jamshedpur
- Nagpur
- Bangalore
- Ahmedabad
- Mumbai
- Chennai

Complaints Received Annually (1,000 complaints)

Figure 29: New Connections Annually

Utilities

- Mathura
- Jabalpur
- Kolkata
- Varanasi
- Ahmedabad
- Bhopal
- Visakhapatnam
- Indore
- Jamshedpur
- Chandigarh
- Coimbatore
- Vijayawada
- Amritsar
- Nagpur
- Rajkot
- Chennai
- Mumbai
- Surat
- Nashik
- Bangalore

New Connections Per Year (1,000 connections)
PART III

WATER UTILITY AND AREA PROFILES
AHMEDABAD MUNICIPAL CORPORATION

Address: Water Project Division, 2nd Floor, Sardar Patel Bhavan, Danapith, Ahmedabad – 380 001, India
Telephone: 91 79 2539 1811
Fax: 91 79 2538 1746
E-mail: tmlad@egovamc.com
Head: Mr. T. M. Lad, Special City Engineer

Ahmedabad Municipal Corporation (AMC) is a municipal corporation established in 1950. It provides water supply and sewerage services for the city of Ahmedabad, which has a total population of 4,990,000 people. The present service area of AMC has a population density of 26,110 persons/km². The utility is responsible for water production, distribution, and source development and draws water from the River Sabarmati and Mahi River, as well as from 400 tube wells. The private sector is involved in water production and operations and maintenance through a management contract. The utility is following a development plan covering 2005–2021. Billing and pumping operations are computerized. The utility has a partly-developed management information system.

Tariff Structure

<table>
<thead>
<tr>
<th>Pipe Size (inch)</th>
<th>Residential</th>
<th>Nonresidential</th>
<th>FLAT RATE: Annual Water and Sewerage Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>¼", ½", 1" dia.</td>
<td>Rs3/m³</td>
<td>Rs8/m³</td>
<td>Rs20/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chawls up to 25 m²</td>
</tr>
</tbody>
</table>

ANNUAL PRORATA CHARGES (Rs/year) – 3" to 4" main

<table>
<thead>
<tr>
<th></th>
<th>25 – 50 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>½"</td>
<td>879</td>
</tr>
<tr>
<td>¾"</td>
<td>2,344</td>
</tr>
<tr>
<td>1"</td>
<td>4,986</td>
</tr>
</tbody>
</table>

ANNUAL PRORATA CHARGES (Rs/year) – 4" to 9" main

<table>
<thead>
<tr>
<th></th>
<th>Nonresidential</th>
<th>Annual Rates (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½"</td>
<td>1,065</td>
<td>Buildings</td>
</tr>
<tr>
<td>¾"</td>
<td>2,958</td>
<td>Industrial/Factories</td>
</tr>
<tr>
<td>1"</td>
<td>6,105</td>
<td>Buildings > 150 m²</td>
</tr>
</tbody>
</table>

Notes:
1. Almost all consumers pay on flat rate annually with the property tax bill. Annual prorata charges are based on the connecting pipe size and the size of the water main to which it connects ranging from 3" to 12".
2. There were 1,919 new connections in 2005–2006. Prices of new domestic water connection are Rs100 for ½" diameter pipe; Rs600 for ¾"; and Rs1,200 for 1" payable prior to connection.

Priority Needs of Utility

1. Regular, adequate, safe water supply to citizens
2. All water supplies must be surface water
3. Water audit

Consumer Service

Average monthly consumption is about 32.1 m³ per connection. The water bill averages Rs49.40 per month per connection. Water is available on an average of 2 hours a day to most users at average pressure of 1.5 meters. Applicants have to wait for about a week for a new connection to be made. The utility claims that sampling for chlorine residual is done daily and most pass the test. There were 30,000 consumers complaints recorded in 2005–2006. Consumers can complain in person at the water utility office or by telephone or letter. The urban poor are provided with free water.

Performance Highlights

AMC provides water at 171 lpcd to its consumers at an average of 2 hours per day to 74.5% of the population in its area of responsibility. Production is not metered and only 3% of total connections are metered. Meters are being phased out. No reliable estimate of UFW can be obtained. While operating ratio at 0.96 shows billing can cover operations and maintenance costs, accounts receivable equivalent of 8 months require more efforts in collection. Average tariff of Rs1.39/m³ is just about able to cover production cost of Rs1.34/m³. Staff/1,000 connections ratio is good at 2.2, the fourth lowest. AMC needs to improve water availability and collection of its receivables. It should take serious efforts in measuring its production and service connections to determine its losses and reduce them as well. Water bills should also be based on actual consumption as a means to conserve water.
AHMEDABAD WATER SUPPLY
Population: 4,491,000

Production/Distribution

- Average Daily Production: 623,836 m³
- Groundwater: 7%
- Surface Water: 93%
- Treatment Type: Conventional
- Storage: 650,000 m³
- Service Area: 172 sq km
- Distribution Length: 2,747 km

Service Connections

- House (5 persons/HC): 546,734
- Public Tap (— persons/PT): Nil
- Commercial: 10,000
- Industrial: Nil
- Institutional: Nil
- Bulk: Nil
- Other: Nil
- Total: 556,734

Service Indicators

- Service Coverage: 74.5%
- Water Availability: 2 hours/day
- Per Capita Consumption: 171 l/c/d
- Average Tariff: Rs1.39/m³

Efficiency Indicators

- Unaccounted Water: no data
- Unit Production Cost: Rs1.34/m³
- Operating Ratio: 0.96
- Accounts Receivable: 8.0 months
- Staff/1,000 Connections: 2.2

Notes:
1. The population is for the present area served by the utility.
2. Residual chlorine test samples are claimed to be taken daily and mostly all pass the test.
3. The total area of responsibility is 449 sq km.
4. This is the percentage of population served by house connections and public taps. Those not served by the utility use tube wells. The urban poor comprise 35% of the population.
5. About 30,000 consumer complaints were registered in 2005–2006.
6. Production is not metered. Only 3% of connections are metered but meters are being phased out. Realistic UFW estimate cannot be determined with figures given.
7. About 20,000–25,000 pipe breaks and leaks repaired during the year.

MUNICIPAL CORPORATION, AMRITSAR

Address: Town Hall, Amritsar, India
Telephone: 91 183 255 2528
Fax: 91 183 254 5155
E-mail: amardeep.dhaliwal@rediffmail.com
Head: Mr. Amardeep S. Dhaliwal, Superintending Engineer (O&M Cell)

Municipal Corporation, Amritsar (MCA) is a municipal corporation established in 1976. It provides water supply and sewerage services for the city, which has a total population of 1,058,500 people. The present service area of MCA has a population density of 7,810 persons/km². The utility is responsible for water production and distribution. It draws water from groundwater sources through 260 tube wells. The private sector is not involved in the utility’s operations nor does it have a master development plan. MCA has a computerized billing system and so are the house tax and pension cell. The utility has a partly developed management information system.

Mission Statement
No mission statement.

General Data About Water Utility

Connections	127,786
Staff	617
Annual O&M Costs	Rs233,686,000
Annual Revenue	Rs171,980,000
Annual Billings	Rs248,270,000
Total Capital Expenditure	Rs211,867,000
Average capital expenditure/connection/year: Rs331.60 (Over the last 5 years)	
Source of Investment Funds	Internally generated reserves and government loan from HUDCO

Tariff Structure

UNMETERED CONNECTIONS (Domestic)

<table>
<thead>
<tr>
<th>Plot Size</th>
<th>Rate (Rs/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 5 marla*</td>
<td>60.00</td>
</tr>
<tr>
<td>Above 5 marla & up to 10 marla</td>
<td>90.00</td>
</tr>
<tr>
<td>Above 10 marla but less than 1 kanal</td>
<td>120.00</td>
</tr>
</tbody>
</table>

METERED CONNECTIONS (Rs/m³)

<table>
<thead>
<tr>
<th>Type</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>3.20</td>
</tr>
<tr>
<td>Commercial</td>
<td>6.40</td>
</tr>
</tbody>
</table>

* Waived as of 11 July 2006. 5 marla = 125 sq yards, 1 kanal = 500 sq yards. Domestic metered connections are residences with plots of 1 kanal and above.

Notes:
1. Institutional and commercial consumers pay on metered use. Domestic users pay a flat rate based on plot sizes with 5 marla domestic connections exempted from payments as of 11 July 2006. All consumers are billed every 3 months.
2. Water bills are paid at the water utility office.
3. There were 3,970 new connections in 2005–2006. The price of a new domestic connection is Rs950 payable prior to connection.

Priority Needs of Utility

1. Institutional improvement
2. Access survey and management
3. Leak detection and control

Consumer Service

Average monthly consumption is about 17.4 m³ per house connection. The water bill averages Rs136.86 per month per house connection. Water is available on an average of 11 hours a day to most users, the second longest to Chandigarh’s 12 hours, and at an average pressure of 2 meters. Applicants have to wait for about 2–3 days for a new connection to be made. A connection fee has to be paid prior to connection. Water quality is good, with 92% of 125 water samples taken during the year passing the residual chlorine test. There were 1,000 consumers complaints recorded and 550 leaks repaired during the year. Consumers can complain in person at the water utility office or by telephone, e-mail, and letter. The urban poor use public taps.

Performance Highlights

MCA provides water at 86 lpcd to its consumers at an average of 11 hours per day to 75.7% of the population in its area of responsibility. It has the second highest UFW at 57.4% among the utilities. Production is not metered and only 45% of commercial and industrial connections are metered, making UFW an estimate at best. Financial management needs improvement with an operating ratio of 1.36 and accounts receivable of 5.6 months. Average tariff of Rs9.34/m³ should easily cover production cost but is hindered by its high NRW. Staff/1,000 connections ratio is better than average at 4.8. MCA needs to reduce its NRW and improve on water availability and quantity. It also needs to improve on its collection efforts. The utility should meter production and further improve metering of connections to account for use.
AMRITSAR WATER SUPPLY

Population: 804,455

<table>
<thead>
<tr>
<th>Production/Distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>171,005 m³</td>
</tr>
<tr>
<td>Groundwater</td>
<td>100%</td>
</tr>
<tr>
<td>Surface Water</td>
<td>Nil</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Disinfection</td>
</tr>
<tr>
<td>Storage</td>
<td>24,000 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>103 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>952 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Connections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>House (6–7 persons/HC)</td>
<td>115,275</td>
</tr>
<tr>
<td>Public Tap (100 persons/PT)</td>
<td>747</td>
</tr>
<tr>
<td>Commercial</td>
<td>10,834</td>
</tr>
<tr>
<td>Industrial</td>
<td>930</td>
</tr>
<tr>
<td>Institutional</td>
<td>Nil</td>
</tr>
<tr>
<td>Bulk</td>
<td>Nil</td>
</tr>
<tr>
<td>Other</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>127,786</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>75.7%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>11 hours/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>86 l/c/d</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs9.34/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficiency Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted Water</td>
<td>57.4%</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs3.74/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>1.36</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>5.6 months</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>4.8</td>
</tr>
</tbody>
</table>

Notes:

1. The population is for the present area served by the utility.
2. About 92% of 125 samples taken passed the residual chlorine test.
3. The total area of responsibility is 136 sq m.
4. This is the percentage of population served by house connections and public taps. Those not served by the utility use tube wells and tankers. The urban poor comprise 36% of the population.
5. About 1,000 consumer complaints were registered in 2005–2006.
6. Production is not metered and only 45% of the total commercial and industrial connections are metered. About 550 leaks were repaired during the year.
7. Commercial and industrial include institutional use and billing.
8. Other cost includes transport and chemicals.

BANGALORE

Utility Profile

BANGALORE WATER SUPPLY AND SEWERAGE BOARD

Address: Cauvery Bhavan, K. G. Road, Bangalore – 560 009, India
Telephone: 91 80 2294 5100
Fax: 91 80 2294 5100
E-mail: chairman@bwssb.org
Head: Mr. N. C. Muniyappa, Chairman of the Board

Bangalore Water Supply and Sewerage Board (BWSSB) is a city board established in 1964. It provides water supply and sewerage services for Bangalore Mahanagara Palike and surrounding areas developed by the Bangalore Development Authority, which has a total population of 5,361,500 people. The present service area of BWSSB has a population density of 23,311 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from surface water sources, with 90% coming from the Cauvery River and the rest from the Arkavathi River. The private sector is involved in the operation and maintenance of the water treatment plant and pumping stations and the wastewater treatment plant through service contracts. BWSSB has a computerized billing system and accounting system, as well as the operation of the sewage treatment plant. It has an annual report for 2005–2006 that is available to the public. BWSSB follows a master development plan covering the period 2000–2025. The utility has a partly developed management information system.

Mission Statement
No mission statement.

General Data About Water Utility

Connections: 486,850
Staff: 2,510
Annual O&M Costs: Rs3,413,551,100
Annual Revenue: Rs4,254,635,200
Annual Billings: Rs3,800,407,300
Total Capital Expenditure: Rs1,918,000,000 (Average capital expenditure/connection/year: Rs787.92
Source of Investment Funds: All from internally generated reserves

Tariff Structure

<table>
<thead>
<tr>
<th>DOMESTIC</th>
<th>NONDOMESTIC</th>
<th>OTHERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption (m³)</td>
<td>Rate (Rs/m³)</td>
<td>Consumption (m³)</td>
</tr>
<tr>
<td>0 – 8*</td>
<td>6.00</td>
<td>0 – 10</td>
</tr>
<tr>
<td>8 – 25</td>
<td>9.00</td>
<td>10 – 20</td>
</tr>
<tr>
<td>25 – 50</td>
<td>15.00</td>
<td>20 – 40</td>
</tr>
<tr>
<td>50 – 75</td>
<td>30.00</td>
<td>40 – 60</td>
</tr>
<tr>
<td>75 – 100</td>
<td>36.00</td>
<td>60 – 100</td>
</tr>
<tr>
<td>Above 100</td>
<td>36.00</td>
<td>Above 100</td>
</tr>
</tbody>
</table>

* There is a minimum charge of Rs48.00 for domestic consumers.

Notes:
1. All consumers pay on metered use as 95.5% of service connections have functioning meters. Consumers are billed monthly.
2. Water bills are paid at banks and automated teller machines (ATMs).
3. There were 28,570 new connections in 2005–2006. The price of a new domestic connection is Rs1,740 payable prior to connection.

Priority Needs of Utility
1. Reduce unaccounted for water.
2. Reuse of water for potable uses and industries.
3. Ensure no flow of sewage in storm drains.

Consumer Service
Average monthly consumption is about 20 m³ per house connection. The water bill averages Rs297 per month per house connection. Water is available on an average of 4–5 hours a day to most users, which is just below the average and at an average pressure of 10 meters. Applicants have to wait for about 3–7 days for a new connection to be made. A connection fee of Rs1,740 has to be paid prior to connection. Water quality can still be improved, with only 85% of 19,523 water samples taken during the year passing the residual chlorine test. There were 25,500 consumers complaints recorded and the same number of leaks repaired during the year. Consumers can complain in person at the water utility office or by e-mail, letter, or via IVRS. The urban poor pay only Rs500 for connection fee and Rs6/m³ for up to 8 m³ per month.

Performance Highlights
BWSSB provides water at only 74 lpcd to its consumers at an average of 4–5 hours per day to 92.9% of the population in its area of responsibility. It has the fourth highest UFW at 45.1% among 14 utilities. Production is fully metered and 95.5% of total connections have functioning meters. Operating ratio is good at 0.8 but accounts receivable of 7.1 months are the fifth highest. Average tariff of Rs20.55/m³ is the highest; high UFW keeps the total revenues just enough to cover costs. Staff/1,000 connections ratio is just about the median at 5.2. BWSSB needs to reduce its NRW and improve on water availability. It also needs to improve on its collection efforts. It could further improve metering of connections to better account for use.
BANGALORE WATER SUPPLY
Population: 5,361,500

Production/Distribution

- Average Daily Production: 923,090 m³
- Groundwater: Nil
- Surface Water: 100%
- Treatment Type: Conventional
- Storage: 75,655 m³
- Service Area: 230 sq km
- Distribution Length: 4,873 km

Service Connections

- House (9.5 persons/HC): 448,940
- Public Tap (100 persons/PT): 7,134
- Commercial: 23,985
- Industrial: 104
- Institutional: 1,310
- Bulk: 5,377
- Other: Nil
- Total: 486,850

Service Indicators

- Service Coverage: 92.9%
- Water Availability: 4-5 hours/day
- Per Capita Consumption: 74 l/c/d
- Average Tariff: Rs20.55/m³

Efficiency Indicators

- Unaccounted Water: 45.1%
- Unit Production Cost: Rs10.13/m³
- Operating Ratio: 0.80
- Accounts Receivable: 7.1 months
- Staff/1,000 Connections: 5.2

Notes:
1. The population is for the present area served by the utility.
2. About 85% of 19,523 samples taken passed the residual chlorine test.
3. The total area of responsibility is 245 sq km.
4. This is the percentage of population served by house connections and public taps. Those not served by piped supply are served by tube wells and tankers. The urban poor comprise 19% of the population.
5. About 25,500 consumer complaints were registered in 2005–2006.
6. Production is fully metered and 95.5% of total connections have operating meters.
7. Commercial and industrial include institutional use and billing.
8. Other cost includes transport and chemicals.

BHOPAL MUNICIPAL CORPORATION

Address: Sadar Manzil, Bhopal – 462 001, India
Telephone: 91 755 254 2070
Fax: 91 755 253 9806
E-mail: bmcbpl@sancharnet.in
Head: Mr. Manish Singh, Municipal Commissioner

Bhopal Municipal Corporation (BMC) was established as a municipal corporation in 1952. It provides water supply and sewerage services to the city of Bhopal, which has a total population of 1,437,000 people. The present service area of BMC has a population density of 5,024 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from the Upper Lake fed by the Kolans River, from Kolar Dam fed by the Kolar River, as well as from 642 tube wells. There is no private sector involvement in the utility’s operations. It has a computerized billing and accounting systems, as well as its complaints-handling system. BMC has an annual report for 2004–2005 that is available to the public; it does not have a master development plan. The utility has a partly developed management information system.

Mission Statement

No mission statement.

General Data About Water Utility

Connections: 105,012
Staff: 2,171
Annual O&M Costs: Rs282,299,000
Annual Revenue: Rs100,000,000
Annual Billings: Rs56,120,900
Total Capital Expenditure (Over the last 5 years): Rs20,600,000
Average capital expenditure/connection/year: Rs39.23

Source of Investment Funds: Government loan from HUDCO

Tariff Structure

<table>
<thead>
<tr>
<th>Size (inch)</th>
<th>Domestic</th>
<th>Commercial*</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>60.00</td>
<td>500.00</td>
<td>600.00</td>
</tr>
<tr>
<td>3/4</td>
<td>400.00</td>
<td>1,000.00</td>
<td>1,000.00</td>
</tr>
<tr>
<td>1</td>
<td>600.00</td>
<td>1,500.00</td>
<td>1,500.00</td>
</tr>
</tbody>
</table>

Tariff for metered domestic connection is Rs3.50/m³

* Commercial includes hotels, restaurants, beauty parlors, nursing homes, and others.

Notes:
1. None of the service connections are metered. Tariffs are based on size of connection and category of user to be paid monthly.
2. Water bills are paid at the water utility office.
3. There were 2,273 new connections in 2005–2006. The price of a new domestic connection is Rs1,500 payable prior to connection.

Priority Needs of Utility

1. 24-hour water supply to all
2. Leak detection to control UFW
3. Meeting the future needs of growing population

Consumer Service

Average monthly consumption is about 22 m³ per house connection. The water bill averages Rs42 per month per house connection. Water is available on an average of 1–2 hours a day to most users, which is the fourth lowest with an average pressure of 5 meters. Applicants have to wait for a month for a new connection to be made. A connection fee of Rs1,500 has to be paid prior to connection. Water quality is good, with 95% of water samples taken during the year passing the residual chlorine test but from a limited sample size. Monitoring of leaks and complaints started only in January 2006, and 608 complaints and 93 leaks were recorded up to May 2006. Consumers can complain in person at the water utility office or by e-mail, letter, and telephone. Connection charges for the urban poor are only one third of the normal fee, or Rs500.

Performance Highlights

BMC provides water at an estimated 72 lpcd to its consumers at an average of 1–2 hours per day to 83.4% of the population in its area of responsibility. UFW could not be computed because of inconsistencies in the production and consumption estimates in the absence of metering for both. Bhopal has the fourth highest operating ratio at 2.82 although accounts receivable of 3.6 months is better than average. Average tariff of Rs0.60/m³ is the lowest and could not cover production costs. Staff/1,000 connections ratio is the highest at 20.7. BMC needs to improve on water availability and staff productivity. It should consider charging the appropriate tariff to cover its expenses. Metering of production and connections are needed to better account for use.
BHOPAL WATER SUPPLY
Population: 1,437,000

Production/Distribution

- Average Daily Production: 258,000 m³
- Groundwater: 7%
- Surface Water: 93%
- Treatment Type: Conventional
- Storage: 94,000 m³
- Service Area: 286 sq km
- Distribution Length: 968 km

Service Connections

- House (10 persons/HC): 95,666
- Public Tap (100 persons/PT): 4,618
- Commercial: 1,284
- Industrial: 130
- Institutional: 3,310
- Bulk: 4
- Other: Nil
- Total: 105,012

Service Indicators

- Service Coverage: 83.4%
- Water Availability: 1 to 2 hours/day
- Per Capita Consumption: 72 l/c/d
- Average Tariff: Rs0.60/m³

Efficiency Indicators

- Unaccounted Water: no data
- Unit Production Cost: Rs3.00/m³
- Operating Ratio: 2.82
- Accounts Receivable: 3.6 months
- Staff/1,000 Connections: 20.7

Notes:

1. The population is for the present area served by the utility.
2. About 95% of 50 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps.
5. An estimated 1,460 consumer complaints were registered in 2005–2006.
6. Both production and connections are not metered. UFW cannot be computed reliably.
7. Commercial and industrial include institutional use and billing.
8. Other cost includes transport and chemicals.

MUNICIPAL CORPORATION, CHANDIGARH
Address: Sector 17, Chandigarh, India
Telephone: 91 172 502 1402
Fax: 91 172 272 1234
E-mail: xenph1_mocil@chd.nic.in
Head: Mr. P. S. Aujla, Municipal Commissioner

Municipal Corporation, Chandigarh (MCC) was established as a municipal corporation in 1994 although the water system dates back to 1949. MCC provides water supply and sewerage services to the city of Chandigarh and the town of Mani Majra, which together have a total population of 1,150,000 people. The present service area of MCC has a population density of 14,495 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from both groundwater and surface water sources. The private sector is involved in distribution, billing and collection, and leak repair through service contracts. It has computerized billing and accounting systems. MCC recently started implementing a 25-year master development plan covering the period 2006–2031. The utility has a well-developed management information system.

No mission statement.

Connections: 139,300
Staff: 1,196
Annual O&M Costs: Rs547,526,000
Annual Revenue: Rs403,853,000
Annual Billings: Rs428,942,660
Total Capital Expenditure (Over the last 5 years): Rs525,593,000 Average capital expenditure/connection/year: Rs754.62
Source of Investment Funds: No data

<table>
<thead>
<tr>
<th>Consumption (m³)</th>
<th>Domestic Rate (Rs/m³)</th>
<th>Category</th>
<th>NonDomestic Rate (Rs/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–15</td>
<td>1.75</td>
<td>Lawn/irrigation</td>
<td>2.50</td>
</tr>
<tr>
<td>15–30</td>
<td>3.50</td>
<td>Institutional</td>
<td>9.00</td>
</tr>
<tr>
<td>30–60</td>
<td>5.00</td>
<td>Semicommercial</td>
<td>12.00</td>
</tr>
<tr>
<td>Above 60</td>
<td>6.00</td>
<td>Commercial</td>
<td>11.00</td>
</tr>
</tbody>
</table>

Notes:
1. About 79% of service connections are metered. Consumers are billed every 2 months. Those not metered pay a monthly flat rate.
2. Water bills are paid at the water utility office, banks, Sampark, and collection centers.
3. There were 3,076 new connections in 2005–2006. The price of a new domestic connection is Rs530 for a half-inch diameter connection payable prior to connection.

1. Water supply
2. Sewage treatment plant
3. Storm water drainage

Average monthly consumption is about 41.2 m³ per connection. Water is available on an average of 12 hours a day to most users, which is the longest duration among the utilities and at an average pressure of 11 meters. Applicants have to wait for only a day for a new connection to be made. A connection fee of Rs530 for a half-inch diameter connection has to be paid prior to connection. Water quality is good, with all of 3,700 water samples taken during the year passing the residual chlorine test. About 2,000 complaints were recorded, and 1,500 pipe breaks and 5,000 leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office or by e-mail, letter, or telephone. The urban poor are provided with stand posts in slum areas.

MMC provides water at 147 lpcd to its consumers at an average of 12 hours per day to all of the population in its area of responsibility. UFW is 38.9%, which is the sixth highest. Production is not metered while 79% of service connections are effectively metered. Operating ratio of 1.36 is the median and better than average. No data were given for accounts receivable. Average tariff of Rs5.04/m³ is not enough to cover operating costs because of high UFW. Staff/1,000 connections ratio is also the sixth highest at 8.6. MMC is doing well in customer service but needs to reduce UFW to manageable levels. It should consider metering of production and connections to better account for use. The utility should also look into improving the productivity of its staff.
Area Profile

CHANDIGARH WATER SUPPLY

Population: 1,150,000

Production/Distribution

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>381,280 m³</td>
</tr>
<tr>
<td>Groundwater</td>
<td>26%</td>
</tr>
<tr>
<td>Surface Water</td>
<td>74%</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Conventional</td>
</tr>
<tr>
<td>Storage</td>
<td>236,080 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>79.3 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>1,500 km</td>
</tr>
</tbody>
</table>

Service Connections

<table>
<thead>
<tr>
<th>Service Connections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>House (10 persons/HC)</td>
<td>124,227</td>
</tr>
<tr>
<td>Public Tap (150 persons/PT)</td>
<td>900</td>
</tr>
<tr>
<td>Commercial</td>
<td>11,793</td>
</tr>
<tr>
<td>Industrial</td>
<td>1,850</td>
</tr>
<tr>
<td>Institutional</td>
<td>530</td>
</tr>
<tr>
<td>Bulk</td>
<td>Nil</td>
</tr>
<tr>
<td>Other</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>139,300</td>
</tr>
</tbody>
</table>

Service Indicators

<table>
<thead>
<tr>
<th>Service Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>100.0%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>12 hours/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>147 l/c/d</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs5.04/m³</td>
</tr>
</tbody>
</table>

Efficiency Indicators

<table>
<thead>
<tr>
<th>Efficiency Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted Water</td>
<td>38.9%</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs3.93/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>1.36</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>no data</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>8.6</td>
</tr>
</tbody>
</table>

Notes:

1. The population is for the present area served by the utility.
2. All 3,700 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps.
5. The utility claims all the population are connected to the water system.
6. Production is not metered while 79% of service connections are metered.
7. Commercial and industrial include institutional use.
8. Other cost includes transport and chemicals.

CHENNAI

CHENNAI METROPOLITAN WATER SUPPLY AND SEWERAGE BOARD

Address: No.1, Pumping Station Road, Chintadripet, Chennai – 2, India
Telephone: 91 44 2845 1300 to 1322
Fax: 91 44 2845 8181
E-mail: cmwssb@md2.vsnl.net.in
Head: Mr. Shiv Das Meena, Managing Director

Chennai Metropolitan Water Supply & Sewerage Board (CMWSSB) is a city board established in 1978. It provides water supply and sewerage services for the city of Chennai, which has a total population of 5,320,000 people. The present service area of CMWSSB has a population density of 29,062 persons/km². The utility is responsible for water production, distribution, and source development and draws water from Viranam Lake and Krishna River, as well as from 11 tube wells. The private sector is involved in water production and distribution through service, management, and build–operate–transfer (BOT) contracts. The utility is following a development plan covering up to 2021. CMWSSB has an annual report for 2005–2006 that is available to the public. CMWSSB has computerized billing and accounting, as well as three water treatment plants and transmission systems. The utility has a partly developed management information system.

Mission Statement

“Our mission is to enhance the health and quality of life for the citizens in Chennai City by providing them with adequate supply of clean and good quality water and safe disposal of sewage/waste water at reasonable price.”

General Data About Water Utility

Connections: 344,079
Staff: 4,578
Annual O&M Costs: Rs1,387,623,200
Annual Revenue: Rs3,127,162,600
Annual Billings: Rs2,053,389,600
Total Capital Expenditure: Rs17,342,500,000 (Average capital expenditure/connection/year: Rs10,080.53 (Over the last 5 years))
Source of Investment Funds: Government grants and loans

Tariff Structure

<table>
<thead>
<tr>
<th>Consumption (m³)</th>
<th>METERED* (Rs/m³)</th>
<th>UNMETERED (Rs/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>Partly Commercial</td>
<td>Domestic</td>
</tr>
<tr>
<td>0 – 10</td>
<td>2.50</td>
<td>5.00</td>
</tr>
<tr>
<td>11 – 15</td>
<td>10.00</td>
<td>15.00</td>
</tr>
<tr>
<td>16 – 25</td>
<td>15.00</td>
<td>25.00</td>
</tr>
<tr>
<td>Above 25</td>
<td>25.00</td>
<td>25.00</td>
</tr>
</tbody>
</table>

Commercial (Rs/m³)

<table>
<thead>
<tr>
<th>Institutional (Rs/m³)</th>
<th>Public TW Supply</th>
<th>w/ Sewerage Charge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Others – Rs35 up to 500 m³, Rs60 beyond 500 m³</td>
<td>Govt hospital – 20.00</td>
<td>40.00</td>
</tr>
<tr>
<td>Private hospital – Rs50 up to 500 m³, Rs80 beyond 500 m³</td>
<td>Private school – 40.00</td>
<td>10.00</td>
</tr>
</tbody>
</table>

*Minimum charges/month, including sewerage charges: Domestic – Rs50/dwelling or flat; Commercial – Rs400 (nonwater intensive), Rs800 (water intensive); Partly commercial – Rs150; Institutional – Rs200 (government hospital), Rs400 (private school).

Notes:
1. Industrial and bulk consumers are metered and are billed monthly. Unmetered consumers are billed half yearly. Water bills are paid at the water utility office, banks, and through bill collectors.
2. There were 8,279 new connections in 2005–2006. Price of new domestic water connection is Rs1,930 payable prior to connection. Sewerage connection charge is Rs3,395.

Priority Need of Utility

1. Water conservation
2. Safe disposal of sewage
3. Source identification and development

Consumer Service

Average monthly consumption is about 42.8 m³ per house connection. The water bill averages Rs85.55 per month per house connection. Water is available on an average of 4–6 hours a day to most users with an average pressure of 2 meters. Applicants have to wait for about a month for a new connection to be made. Water quality is good, with 99% of 28,086 water samples taken during the year passing the chlorine residual test. There were 156,984 consumers complaints recorded in 2005–2006. Consumers can complain in person at the water utility office or by telephone, letter, and e-mail. The urban poor are provided with free water from sintex tanks and public fountains. They pay a minimal sewerage connection charge of Rs3,395.

Performance Highlights

CMWSSB provides water at 87 lpcd to its consumers at an average of 5 hours per day to 89.3% of the population in its service area. It has the fifth lowest UFW at 17.0%. However, while production is fully metered, only 3.5% of total connections are metered making UFW figure an estimate at best. Financial management is good, with the lowest operating ratio at 0.44 and accounts receivable equivalent of 1.1 months, the third lowest. Average tariff of Rs10.87/m³ can easily cover production cost. Staff/1,000 connections ratio is high at 13.3, the fifth highest. CMWSSB needs to increase water availability and staff productivity. It should also improve metering of service connections to account for use.
Area Profile

CHENNAI WATER SUPPLY
Population: 5,320,000

Production/Distribution
- Average Daily Production: 623,836 m³
- Groundwater: 9%
- Surface Water: 91%
- Treatment Type: Filtration
- Storage: 355,480 m³
- Service Area: 183.1 sq km
- Distribution Length: 2,600 km

Service Connections
- House (13.8 persons/HC): 284,965
- Public Tap (87 persons/PT): 9,399
- Commercial: 48,958
- Industrial: 56
- Institutional: 693
- Bulk: 8
- Other: Nil
- Total: 344,079

Service Indicators
- Service Coverage: 89.3%
- Water Availability: 5 hours/day
- Per Capita Consumption: 87 l/c/d
- Average Tariff: Rs10.87/m³

Efficiency Indicators
- Unaccounted Water: 17.0%
- Unit Production Cost: Rs6.09/m³
- Operating Ratio: 0.44
- Accounts Receivable: 1.1 months
- Staff/1,000 Connections: 13.3

Notes:
1. The population is for the present area served by the utility.
2. About 99% of 28,086 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps. About 1% of the population are served by tankers. The urban poor comprise 10% of the population.
5. About 156,984 consumer complaints were registered in 2005–2006.
6. While production is fully metered, only 3.5% of total connections is metered.
7. There were 494 pipe breaks and 3,538 leaks were repaired during the year.
8. Other cost includes transport and chemicals.

Coimbatore City Municipal Corporation (CCMC) is a municipal corporation operating the city water system that dates back to 1931 as the Siruvani System. CCMC provides water supply and sewerage services to the city of Coimbatore, which has a total population of 1,050,000 people. The present service area of CCMC has a population density of 9,413 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from the Pattiyar River and several spring sources. The private sector is not involved in the utility’s operations. CCMC has computerized billing and accounting systems. It recently completed a 5-year master development plan covering the period 2001–2006. It has an annual report for 2006–2007 that is available to the public. The utility also has a well-developed management information system.

Mission Statement

“To provide drinking water supply to all areas in the corporation’s limits.”

General Data About Water Utility

- Connections: 113,762
- Staff: 452
- Annual O&M Costs: Rs111,00,00,000
- Annual Revenue: Rs135,00,00,000
- Annual Billings: Rs179,20,00,000
- Total Capital Expenditure: Rs543,202,000
 - Average capital expenditure/connection/year: Rs954.98
- Source of Investment Funds: Internally generated reserves

Tariff Structure

<table>
<thead>
<tr>
<th>Consumption (m³)</th>
<th>Domestic</th>
<th>Nondomestic</th>
<th>Bulk – Domestic</th>
<th>Bulk – Nondomestic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 – 50</td>
<td>3.50</td>
<td>7.00</td>
<td>3.50</td>
<td>7.00</td>
</tr>
<tr>
<td>50 – 100</td>
<td>4.00</td>
<td>9.00</td>
<td>4.00</td>
<td>9.00</td>
</tr>
<tr>
<td>100 – 150</td>
<td>5.00</td>
<td>12.00</td>
<td>5.00</td>
<td>12.00</td>
</tr>
<tr>
<td>Above 150</td>
<td>6.50</td>
<td>15.00</td>
<td>6.50</td>
<td>15.00</td>
</tr>
<tr>
<td></td>
<td>Bimonthly minimum</td>
<td>Rs80.00</td>
<td>Rs600.00</td>
<td>Rs350.00</td>
</tr>
</tbody>
</table>

Domestic users are allowed a free allowance of 100 liters per day. Supply on a per-tap basis is allowed at Rs50 per tap connection per month.

Notes:
1. All connections are metered and consumers are billed every 2 months.
2. Water bills are paid at the water utility office, at banks, through bill collectors, and at CCMC collection centers.
3. There were 3,240 new connections in 2005–2006. The price of a new domestic connection is Rs3,000 payable prior to connection.

Priority Needs of Utility

1. Nonrevisi on of tariffs in nearly 10 years
2. Shortage of staff with ban on fresh recruitments
3. Limited role of private sector

Consumer Service

Average monthly consumption is about 21.0 m³ per house connection. The water bill averages Rs70.95 per month per house connection. Water is available on an average of 3 hours a day only to most users with an average pressure of 3 meters. Applicants have to wait for a month for a new connection to be made. A connection fee of Rs3,000 has to be paid prior to connection. Water quality is good, with 90% of 3,650 water samples taken during the year passing the residual chlorine test. About 3,460 complaints were recorded, and only 30 pipe breaks and 5,200 leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office, by letter or telephone. The utility sees to it that those living below the poverty line are supplied with drinking water.

Performance Highlights

CCMC provides water at 109 lpcd to its consumers at an average of 3 hours per day to 76.1% of the population in its area of responsibility. UFW is the fifth highest at 41.3% with both production and consumption fully metered, which gives an accurate measure of its losses. Financial management is good, with an operating ratio of 0.82 and accounts receivable at 3.0 months, the sixth lowest but can still be reduced. Average tariff of Rs3.66/m³ is enough to cover operating costs. Staff/1,000 connections ratio is fair at 4.0, which is about half of the average. CCMC needs to reduce its UFW and increase the available hours of its supply and coverage as well.
COIMBATORE WATER SUPPLY

Population: 994,000

Production/Distribution

- Average Daily Production: 228,400 m³
- Groundwater: 1%
- Surface Water: 99%
- Treatment Type: Conventional
- Storage: 125,000 m³
- Service Area: 105.6 sq km
- Distribution Length: 1,205 km

Service Connections

- House (5 persons/HC): 107,000
- Public Tap (150 persons/PT): 2,811
- Commercial: 3,523
- Industrial: Nil
- Institutional: Nil
- Bulk: 428
- Others: Nil
- Total: 113,762

Service Indicators

- Service Coverage: 76.1%
- Water Availability: 3 hours/day
- Per Capita Consumption: 109 lpcd
- Average Tariff: Rs3.66/m³

Efficiency Indicators

- Unaccounted for Water: 41.3%
- Unit Production Cost: Rs1.33/m³
- Operating Ratio: 0.82
- Accounts Receivable: 3.0 months
- Staff/1,000 Connections: 4.0

Notes:

1. The population is for the present area served by the utility.
2. About 90% of 3,650 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps.
5. About 19% of the population draw water from tankers provided by the utility.
7. Commercial and industrial include institutional use and billing.
8. Other cost includes transport and chemicals.

INDORE MUNICIPAL CORPORATION

Address: M. G. Road, Indore – 452 004, M. P., India
Telephone: 91 731 243 1610; 271 0695
Fax: 91 731 243 4489
E-mail: piuindore@hotmail.com
Head: Mr. Vinod Sharma, Municipal Commissioner

Indore Municipal Corporation (IMC) is a municipal corporation established in 1977. It provides water supply and sewerage services to the cities of Indore, Mhow, and Dewas, which have a total population of 2,200,000 people. The present service area of IMC has a population density of 12,222 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from the Narmada and Gambhir Rivers and from 2,960 tube wells with pump sets. The private sector is not involved in the utility’s operations. IMC has computerized billing and accounting systems. It does not have an annual report nor does it have a master development plan. The utility has a partly developed management information system.

Mission Statement
No mission statement.

General Data About Water Utility

Connections	159,104
Staff	2,979
Annual O&M Costs	Rs880,616,080
Annual Revenue	Rs165,264,590
Annual Billings	Rs186,038,400
Total Capital Expenditure	Rs543,202,000
Average capital expenditure/connection/year	Rs353.95 (Over the last 5 years)
Source of Investment Funds	30% internally generated reserves; 70% commercial loan (State Bank of Indore)

Tariff Structure

<table>
<thead>
<tr>
<th>Size (inch)</th>
<th>Domestic</th>
<th>Commercial</th>
<th>Industrial</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2</td>
<td>150</td>
<td>300</td>
<td>600</td>
</tr>
<tr>
<td>3/4</td>
<td>250</td>
<td>600</td>
<td>1,200</td>
</tr>
<tr>
<td>1</td>
<td>500</td>
<td>1,400</td>
<td>2,400</td>
</tr>
<tr>
<td>1 – 1/2</td>
<td>1,000</td>
<td>2,400</td>
<td>5,000</td>
</tr>
<tr>
<td>2</td>
<td>2,000</td>
<td>5,000</td>
<td>10,000</td>
</tr>
<tr>
<td>3</td>
<td>4,000</td>
<td>10,000</td>
<td>20,000</td>
</tr>
<tr>
<td>4</td>
<td>8,000</td>
<td>20,000</td>
<td>35,000</td>
</tr>
<tr>
<td>6</td>
<td>14,000</td>
<td>38,000</td>
<td>76,000</td>
</tr>
</tbody>
</table>

METERED CONNECTIONS – Bulk Rates (Rs/m³)

| Bulk rates | 11.00/m³ | 14.00/m³ | 24.00/m³ |

Notes:
1. Only 59 bulk connections are metered and not all are working. Most connections are on flat rate. The metered connections are billed monthly and the flat rates are billed quarterly.
2. Water bills are paid at the water utility office and through bill collectors.
3. There were 2,524 new connections in 2005–2006. The price of a new domestic connection is Rs2,500 payable prior to connection.

Priority Needs of Utility
1. Augmentation of water supply system capacity
2. Increase in revenue to make system sustainable
3. Upgrade of existing distribution system

Consumer Service
Average monthly consumption is about 28.4 m³ per house connection. The water bill averages Rs60.36 per month per house connection. Water is available on an average of 45 minutes a day only to most users with an average pressure of 1 meter. Applicants have to wait for 2–4 weeks for a new connection to be made. A connection fee of Rs2,500 has to be paid prior to connection. Water quality is good, with 98% of about 54,900 water samples taken during the year passing the residual chlorine test. About 550 complaints were recorded, and 5,886 pipe breaks and leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office, by letter, e-mail, or telephone. The urban poor are provided with free water through public taps, tube wells with pumps, and tankers.

Performance Highlights
IMC provides water at 87 lpcd to its consumers at an average of 45 minutes per day to 77.3% of the population in its area of responsibility. With both production and connections not metered, available production and consumption estimates do not give a credible UFW value. Operating ratio is highest at 5.33. Accounts receivable are about average at 5.2 months. Average tariff of Rs2.79/m³ is lower than the high production cost of Rs13.18/m³ because of high-cost power most probably for pumping. Staff/1,000 connections ratio is the second highest at 18.7. IMC will need a lot of improvement starting with reducing its operating expenses and improving collections. Water availability of less than 1 hour a day is not acceptable and should be improved. Staff productivity needs to be enhanced. Production and all connections need to be metered to allow billing based on use and to account for total use and losses.
Area Profile

INDORE WATER SUPPLY
Population: 2,200,000

Production/Distribution

- Average Daily Production: 183,000 m3
- Groundwater: 7%
- Surface Water: 93%
- Treatment Type: Conventional
- Storage: 99,000 m3
- Service Area: 180 sq km
- Distribution Length: 2,040 km

Service Connections

- House (7 persons/HC): 156,634
- Public Tap (2,000 persons/PT): 93
- Commercial: 1,257
- Industrial: 1,024
- Institutional: 20
- Bulk: 72
- Others: 4
- Total: 159,104

Service Indicators

- Service Coverage: 77.3%
- Water Availability: 0.75 hours/day
- Per Capita Consumption: 87 lpcd
- Average Tariff: Rs2.79/m3

Efficiency Indicators

- Unaccounted for Water: no data
- Unit Production Cost: Rs13.18/m3
- Operating Ratio: 5.33
- Accounts Receivable: 5.2 months
- Staff/1,000 Connections: 18.7

Notes:

1. The population is for the present area served by the utility.
2. About 98% of 54,897 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps.
5. About 9% of the population draw water from tube wells and tankers provided by the utility.
6. The urban poor comprise 10% of the population.
7. Both production and all service connections except for 59 connections are not metered.
8. Commercial and industrial include institutional use and billing.
9. Other cost includes transport and chemicals.

JABALPUR MUNICIPAL CORPORATION

Address: Water Works Department, Jabalpur Municipal Corporation, Jabalpur, M. P., India
Telephone: 91 761 240 3020 to 22
Fax: 91 761 241 0892
E-mail: commrjmc@yahoo.com.in
Head: Mr. Adjay Sharma, Executive Engineer (Water Works)

Jabalpur Municipal Corporation (JMC) was established as a municipal corporation in 1956. Its Water Works Department provides only water supply services to the city of Jabalpur, which has a total population of 1,050,000 people. The present service area of JMC has a population density of 8,753 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from the Narmada, Khandari-Gour, and Pariyat Rivers and from 175 tube wells with pump sets. The private sector is not involved in the utility’s operations. None of its operations is computerized nor does it have an annual report or a master development plan. The utility neither has a management information system.

Mission Statement

No mission statement.

General Data About Water Utility

Connections	46,260
Staff	17
Annual O&M Costs	Rs104,014,350
Annual Revenue	Rs61,923,800
Annual Billings	Rs82,277,000
Total Capital Expenditure	Rs200,000,000
(Over the last 5 years)	
Source of Investment Funds	32% internally generated reserves; 64% government grant; 4% commercial loan and other sources

Tariff Structure

No tariff structure submitted.

Notes:

1. None of the service connections are metered. All consumers pay on flat rate and are billed annually.
2. Water bills are paid at the water utility office and through bill collectors.
3. There were only 300 new connections in 2005–2006. The price of a new domestic connection is Rs1,984 payable prior to connection but may also be paid in installment over 12 months.

Priority Needs of Utility

1. Leakage control
2. Zoning of water distribution system
3. Collection improvement – realization of cess

Consumer Service

Average monthly consumption is about 69.2 m³ per house connection. The water bill averages Rs62.74 per month per house connection. Water is available on an average of 4 hours a day only to most users. Applicants have to wait for about 2 weeks for a new connection to be made. A domestic connection fee of Rs1,984 is paid prior to connection but can also be paid over a 12-month period. Water quality is good, with 96% of 650 water samples taken during the year passing the residual chlorine test. About 700 complaints were recorded, and 400 pipe breaks and leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office, or by letter or telephone. The urban poor pay low monthly charges of Rs30 and connection charge of Rs300 only.

Performance Highlights

JMC provides water at 139 lpcd to its consumers at an average of 4 hours per day to 75.2% of the population in its area of responsibility. With both production and service connections not metered, UFW of 14.3% is, at best, an estimate. Operating ratio is 1.68 and accounts receivable equivalent is 3 months. Average tariff of Rs1.50/m³ is the fifth lowest and cannot cover operating expenses. Staff/1,000 connections ratio is lowest at 0.4. JMC needs to address its water availability, its low tariff, and operating ratio of more than 1. Production and all connections need to be metered to allow billing based on use and to account for total use and losses.
Area Profile

Jabalpur

JABALPUR WATER SUPPLY
Population: 1,050,000

Production/Distribution
Average Daily Production: 175,115 m³
Groundwater: 9%
Surface Water: 91%
Treatment Type: Conventional
Storage: 70,000 m³
Service Area: 123 sq km
Distribution Length: 162 km

Service Connections
House (5 persons/HC): 44,000
Public Tap (100 persons/PT): 1,600
Commercial: 648
Industrial: 8
Institutional: 2
Bulk: 2
Others: Nil
Total: 46,260

Service Indicators
Service Coverage: 75.2%
Water Availability: 4 hours/day
Per Capita Consumption: 139 lpcd
Average Tariff: Rs1.50/m³

Efficiency Indicators
Unaccounted for Water: 14.3%
Unit Production Cost: Rs1.63/m³
Operating Ratio: 1.68
Accounts Receivable: 3.0 months
Staff/1,000 Connections: 0.4

Notes:
1. The population is for the present area served by the utility.
2. About 96% of 650 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps.
5. About 700 consumer complaints were registered in 2005–2006.
6. Production and service connections are not metered. UFW is at best an estimate.
7. Commercial and industrial include institutional use and billing.
8. Other cost includes transport and chemicals.

Annual Water Billings
Rs82,277,000

Annual O&M Costs
Rs104,014,350
JAMSHEDPUR UTILITIES & SERVICES COMPANY, LIMITED

Address: Sakchi Boulevard Road, Northern Town, Bistupur, Jamshedpur – 831 001, India
Telephone: 91 657 214 3507
Fax: 91 657 242 4219
E-mail: gsbasu@tatasteel.com
Head: Mr. G. S. Basu, General Manager – Water Management

Jamshedpur Utilities & Services Co., Ltd. (JUSCO), formerly Towns Division of Tata Steel, is a private company that was spun off in 2003. The entity has been operating the water supply system and other municipal services since 1919. JUSCO provides water supply and sewerage services to the city of Jamshedpur, which has a total population of 615,500 people. The present service area of JUSCO has a population density of 9,959 persons/km2. The utility is responsible for water production, distribution, and source development. It draws water mainly from the River Subernarekha and from the Dimna Lake for contingency only. All of the utility’s operations are done by the private sector. Billing and accounting are computerized together with industrial water treatment, customer complaint management, network management, and flow meter data handling and UFW analysis. JUSCO has a well-developed management information system. JUSCO follows a master development plan for the period 1986–2010. Its annual report is available in its website.

Mission Statement
“Quality services for life. We will be the preferred provider of civic and allied services and a national leader in the water and sanitation business. Guided by Tata values, we will continuously strive to delight our customers through a team of happy and empowered employees.”

General Data About Water Utility
- Connections: 38,800
- Staff: 218
- Annual O&M Costs: Rs328,300,000
- Annual Revenue: Rs531,669,000
- Annual Billings: Rs531,669,000
- Total Capital Expenditure (Over the last 5 years): Rs188,400,000
- Average capital expenditure/connection/year: Rs971.13
- Source of Investment Funds: All from internally generated reserves

Tariff Structure

<table>
<thead>
<tr>
<th>Type of User</th>
<th>Rate (Rs/m3)</th>
<th>Plot Size</th>
<th>Domestic (Rs)</th>
<th>Nondomestic (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>7.90</td>
<td>(Sq ft)</td>
<td>Single Storey</td>
<td>Add’l Floor</td>
</tr>
<tr>
<td>Educational</td>
<td>4.40</td>
<td>Up to 1,600</td>
<td>120</td>
<td>110, 450</td>
</tr>
<tr>
<td>Commercial</td>
<td>7.90</td>
<td>Up to 2,500</td>
<td>240</td>
<td>180, 540</td>
</tr>
<tr>
<td>Industrial</td>
<td>9.90</td>
<td>2,500 – 4,000</td>
<td>450</td>
<td>300, 600</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4,000 – above</td>
<td>540</td>
<td>360, 600</td>
</tr>
</tbody>
</table>

Notes:
1. Only 335 connections are metered with a mix of industrial, commercial, institutional, domestic, and bulk connections. The rest pay on flat rate monthly based on plot size.
2. Water bills are paid at the water utility office.
3. There were 2,538 new connections in 2005–2006. The price of a new domestic connection is Rs300–Rs500 within an existing network payable prior to connection. For new network, new connection costs Rs3,000–Rs9,000.

Priority Needs of Utility
1. Increase service coverage
2. 2.4 x 7 supply with 100% metering
3. Reduction of nonrevenue water

Consumer Service
Average monthly consumption is about 71.9 m3 per house connection. The water bill averages Rs81.08 per month per house connection. Water is available on an average of 6 hours a day only to most users with an average pressure of 5 meters. Applicants have to wait for about a month for a new connection to be made. A domestic connection fee of Rs300–Rs500 is paid prior to connection but can also be paid over a 12-month period. Water quality is good, with 96% of 840 water samples taken during the year passing the residual chlorine test. About 15,516 complaints were recorded, and 1,189 pipe breaks and 1,604 leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office, by letter, or by telephone. The urban poor are provided with free water from 552 public stand posts and subsidized tariffs for those connected. Outside the network, bore wells with hand pumps provide free water.

Performance Highlights
JUSCO provides water at 203 lpcd to its consumers at an average of 6 hours per day to 74.4% of the population in its area of responsibility. While production is metered, less than 1% of service connections are metered. UFW of 12.8% is the lowest. Financial management is very good, with operating ratio of 0.62 and accounts receivable of 0.3 month. Average tariff of Rs4.51/m3 is about average but covers expenses well. Staff/1,000 connections ratio is less than average at 5.6. JUSCO is operating well except for water availability. It can further improve by full metering of all service connections.
JAMSHEDPUR WATER SUPPLY

Population: 488,000

Production/Distribution

Average Daily Production 370,110 m³
Groundwater Nil
Surface Water 100%
Treatment Type Conventional
Storage 45,650 m³
Service Area 49 sq km
Distribution Length 513 km

Service Connections

House (9.4 persons/HC) 36,195
Public Tap (140 persons/PT) 552
Commercial 1,572
Industrial 35
Institutional 178
Bulk (total of 3,965 housing units) 101
Others 167
Total 38,800

Service Indicators

Service Coverage 74.4%
Water Availability 6 hours/day
Per Capita Consumption 203 lpcd
Average Tariff Rs4.51/m³

Efficiency Indicators

Unaccounted for Water 12.8%
Unit Production Cost Rs2.43/m³
Operating Ratio 0.62
Accounts Receivable 0.3 month
Staff/1,000 Connections 5.6

Notes:

1 The population is for the present area served by the utility.
2 About 96% of 840 samples taken passed the residual chlorine test.
3 The total area of responsibility is 64 sq km (km²).
4 This is the percentage of population served by house connections, public taps, and apartment units
 with bulk connections. About 5% of the population draw water from utility tankers during emergencies.
The urban poor comprise 20% of the population.
5 About 15,516 consumer complaints were registered in 2005–2006.
6 While production is metered, only 335 service connections (less than 1%) are metered.
 About 1,189 pipe breaks and 1,604 leaks were repaired during the year.
7 Commercial and industrial include institutional use and billing.
8 Other cost includes transport, chemicals, and payment for raw water.

Utility Profile

KOLKATA MUNICIPAL CORPORATION

Address: 5, S. N. Bannerjee Road, Kolkata – 700 013, India
Telephone: 91 33 2286 1293
Fax: 91 33 2286 1234
E-mail: dgws@rediffmail.com
Head: Mr. Bibhas Kumar Maity, Director General (Water Supply)

Kolkata Municipal Corporation (KMC) was established as a municipal corporation in 1924. KMC provides water supply and sewerage services to the city of Kolkata and five other cities and towns, which together have a total population of 4,998,000 people. The present service area of KMC has a population density of 27,014 persons/km². The utility is responsible for water production, distribution, and source development. It draws water mainly from the River Hooghly and from 260 tube wells. The private sector is involved in source development, production, management, leak repair, and potable water tanker service through service and management contracts. Billing, part of pumping, fund management, record keeping, and network mapping are computerized. The utility has a partly developed management information system. No annual report is available. It has a 20-year master development plan covering 2006–2026.

Mission Statement

“Water for all, the effort continues.”

General Data About Water Utility

<table>
<thead>
<tr>
<th>Connections</th>
<th>262,839</th>
<th>Staff</th>
<th>3,866</th>
<th>Annual O&M Costs</th>
<th>Rs1,228,500,000</th>
<th>Annual Revenue</th>
<th>Rs260,000,000</th>
<th>Annual Billings</th>
<th>Rs260,000,000</th>
<th>Total Capital Expenditure</th>
<th>Rs2,953,800,000</th>
</tr>
</thead>
</table>

Average capital expenditure/connection/year: Rs2,247.61

Source of Investment Funds

- Internally generated reserves and grant from the Government of West Bengal

Tariff Structure

NONDOMESTIC CONNECTIONS

<table>
<thead>
<tr>
<th>Ferrule Size (inch)</th>
<th>Monthly Rate (Rs)</th>
<th>Ferrule Size (inch)</th>
<th>Monthly Rate (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>200</td>
<td>1/2</td>
<td>700</td>
</tr>
<tr>
<td>3/16</td>
<td>250</td>
<td>Above 1/2</td>
<td>1,100</td>
</tr>
<tr>
<td>1/4</td>
<td>300</td>
<td>3/4</td>
<td>1,800</td>
</tr>
<tr>
<td>3/8</td>
<td>500</td>
<td>1</td>
<td>2,700</td>
</tr>
<tr>
<td>7/16</td>
<td>600</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Notes:

1. Water supplied for domestic consumption is not charged at all and is supplied free of cost. Only bulk supply for domestic uses is charged. Only 175 bulk connections are metered, of which 94 are for domestic purposes and 91 are industrial, commercial, and institutional connections.

2. Water bills are paid at the water utility office.

3. There were 1,052 new connections in 2005–2006, mostly domestic ferrule connection. The price of a new domestic connection is Rs1,000 for a 10-mm ferrule connection payable prior to connection.

Priority Needs of Utility

1. Water supply network management
2. Management of UFW reduction
3. 24/7 water supply with 100% metering

Performance Highlights

KMC provides water at 130 lpcd to its customers at an average of 8 hours per day to 79.0% of the population in its area of responsibility. UFW is estimated at a high 35%, with production not metered and less than 1% of service connections metered. Financial management needs improvement with the second highest operating ratio of 4.73 and accounts receivable of 2.4 months. Average tariff of Rs1.13/m³ is the third lowest, which cannot cover expenses at all. Staff/1,000 connections ratio is the fourth highest at 14.7. KMC needs to cover its expenses through appropriate tariffs and by charging domestic users for their use. It also needs to improve collection and water availability, and reduce its high UFW. Staff productivity should also be enhanced. Metering is necessary to account for water use and to determine the extent of losses.
KOLKATA WATER SUPPLY

Population: 3,998,000

Production/Distribution

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>971,560 m³</td>
</tr>
<tr>
<td>Groundwater</td>
<td>12%</td>
</tr>
<tr>
<td>Surface Water</td>
<td>88%</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Conventional</td>
</tr>
<tr>
<td>Storage</td>
<td>474,430 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>148 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>5,800 km</td>
</tr>
</tbody>
</table>

Service Connections

<table>
<thead>
<tr>
<th>Sector</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>House (9.4 persons/HC)</td>
<td>237,912</td>
</tr>
<tr>
<td>Public Tap (140 persons/PT)</td>
<td>17,000</td>
</tr>
<tr>
<td>Commercial</td>
<td>Nil</td>
</tr>
<tr>
<td>Industrial</td>
<td>7,752</td>
</tr>
<tr>
<td>Institutional</td>
<td>Nil</td>
</tr>
<tr>
<td>Bulk</td>
<td>175</td>
</tr>
<tr>
<td>Others</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>262,839</td>
</tr>
</tbody>
</table>

Service Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>79.0%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>8 hours/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>130 lpcd</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs1.13/m³</td>
</tr>
</tbody>
</table>

Efficiency Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted for Water</td>
<td>35.0%</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs3.46/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>4.73</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>2.4 months</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Notes:

1. The population is for the present area served by the utility.
2. About 90% of 7,000 samples taken passed the residual chlorine test.
3. The total area of responsibility is 185 sq km (km²).
4. This is the percentage of population served by house connections and public taps. The rest of the population draw water from tube wells and tankers. The urban poor comprise 35% of the population.
5. No record of consumer complaints are kept at the central level but are at the wards.
6. Production is not metered and only 175 bulk connections (less than 1%) are metered.
7. About 8,000 pipe breaks and 77,197 leaks were repaired during the year.
8. Domestic consumption are not billed. Commercial and industrial include institutional use and billing.

MATHURA Utility Profile

Water Utility

<table>
<thead>
<tr>
<th>Address</th>
<th>Water Works, near Fire Station, Bhuteshwar, Mathura, U. P., India</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telephone</td>
<td>91 565 290 0987</td>
</tr>
<tr>
<td>Fax</td>
<td>91 565 250 5070</td>
</tr>
<tr>
<td>E-mail</td>
<td>npp_mtr@yahoo.com</td>
</tr>
<tr>
<td>Head</td>
<td>Mr. Sumit Kumar, Chief Executive Officer</td>
</tr>
</tbody>
</table>

Mathura Municipal Council (MMC) was established as a municipal council in 1916 although the water supply network was laid just before 1950. MMC provides water supply and sewerage services to the city of Mathura, which has a total population of 340,000 people. The present service area of MMC has a population density of 12,124 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from groundwater and surface water sources. The private sector is involved in leak repair and tube well operation through service contracts. Billing and accounting are computerized. The utility has no management information system nor does it have an annual report or a master development plan.

Mission Statement

No mission statement.

General Data About Water Utility

<table>
<thead>
<tr>
<th>Connections</th>
<th>24,643</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff</td>
<td>160</td>
</tr>
<tr>
<td>Annual O&M Costs</td>
<td>Rs28,123,000</td>
</tr>
<tr>
<td>Annual Revenue</td>
<td>Rs9,205,690</td>
</tr>
<tr>
<td>Annual Billings</td>
<td>Rs8,662,000</td>
</tr>
<tr>
<td>Total Capital Expenditure</td>
<td>Rs87,829,000</td>
</tr>
<tr>
<td>(Over the last 5 years)</td>
<td></td>
</tr>
<tr>
<td>Source of Investment Funds</td>
<td>15% internally generated reserves; 85% government grant</td>
</tr>
</tbody>
</table>

Tariff Structure

ALL CONNECTIONS ARE UNMETERED

A uniform water tax is levied for all users, which is 12.5% of annual rental value. This is collected as part of the property tax. Different types of consumers pay according to this tariff structure with industrial users paying more since their annual rental values are higher.

Notes:

1. Water tariff is paid annually with the property tax.
2. There were only 12 new connections reported for 2005–2006. The price of a new domestic connection is Rs500 payable prior to connection.

Priority Needs of Utility

1. Master plan for distribution system
2. Rehabilitation in core of city and expansion
3. Metering and computerization for billing and collection

Consumer Service

Average monthly consumption is about 52.5 m³ per house connection. The water bill averages Rs32.66 per month per house connection. Water is available on an average of 1–3 hours a day at an average pressure of 5 meters to most users. Applicants have to wait for about 7 days for a new connection to be made. A domestic connection fee of Rs500 is paid prior to connection. Water quality is good, with 97% of 308 water samples taken during the year passing the residual chlorine test. Complaints are not recorded. About 402 pipe breaks and leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office or by letter or telephone. The urban poor are treated no differently from other consumers except that slum dwellers pay lower water tax as their annual rental value is low.

Performance Highlights

MMC provides water to its consumers at an average of 1–3 hours per day to 70% of the population in its area of responsibility. Both production and all service connections are not metered. Estimates given show consumption equal to production, giving unrealistic values for per capita consumption and UFW. Financial management needs improvement with the third highest operating ratio of 3.05 and accounts receivable of 12.3 months, which is the highest. Average tariff of Rs0.62/m³ is the second lowest, which could not cover expenses at all. Staff/1,000 connections ratio is better than average at 6.5. MMC needs to cover its expenses through appropriate tariffs. It also needs to improve collection and water availability. Metering is necessary to account for water use and to determine the extent of losses.
MATHURA WATER SUPPLY

Population: 238,000

<table>
<thead>
<tr>
<th>Production/Distribution</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>38,172 m³</td>
</tr>
<tr>
<td>Groundwater %</td>
<td>69%</td>
</tr>
<tr>
<td>Surface Water %</td>
<td>31%</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Conventional</td>
</tr>
<tr>
<td>Storage</td>
<td>4,500 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>19.6 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>254 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Connections</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>House (6 persons/HC)</td>
<td>22,103</td>
</tr>
<tr>
<td>Public Tap (200 persons/PT)</td>
<td>980</td>
</tr>
<tr>
<td>Commercial</td>
<td>1,560</td>
</tr>
<tr>
<td>Industrial</td>
<td>Nil</td>
</tr>
<tr>
<td>Institutional</td>
<td>Nil</td>
</tr>
<tr>
<td>Bulk</td>
<td>Nil</td>
</tr>
<tr>
<td>Others</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>24,643</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Indicators</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>70.0%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>1 to 3 hours/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>no data</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs0.62/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficiency Indicators</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted for Water</td>
<td>no data</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs2.02/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>3.05</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>12.3 months</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>6.5</td>
</tr>
</tbody>
</table>

Notes:

1. The population is for the present area served by the utility.
2. About 97% of 308 samples taken passed the residual chlorine test.
3. The total area of responsibility is 28.1 sq km
4. This is the percentage of population served by house connections and public taps. About 10% of the population draw water from tube wells provided by the utility.
5. The urban poor comprise 40% of the population.
6. No record of consumer complaints were kept by the utility.
7. Consumption data given were questionable; hence, per capita use and UFW could not be determined.
8. About 402 pipe breaks and leaks were repaired during the year.
9. Other cost includes transport and chemicals.
MUNICIPAL CORPORATION OF GREATER MUMBAI

Address: Municipal Head Office, Fort, Mumbai – 400 001, India
Telephone: 91 22 2262 0025
Fax: 91 22 2263 4329
E-mail: bmcbacum@rediffmail.com, hebmc@mtln.net.in
Head: Mr. R. R. Hariname, Hydraulic Engineer

Municipal Corporation of Greater Mumbai (MCGM) was established in 1888. MCGM has separate departments providing water supply and sewerage services to the city of Mumbai, which has a total population of 13,000,000 people. The present service area of MCGM has a population density of 29,613 persons/km². The utility is responsible for water production, distribution, and source development. It draws water mainly from the following surface water sources: Vaitarna, Tansa, and Bhatasa Rivers, and Lakes Vihar and Tulsi. There is no private sector involvement in the utility’s operations. Billing, accounting, and part of pumping and treatment operations are computerized. The utility has a partly developed management information system. It publishes an annual report that is available to the public. MCGM has no current master development plan.

Mission Statement
“To provide all users in Mumbai City with continuous, uninterrupted, reliable water treatment services to provide good quality supply of clean water in a safe, environmentally sound, and cost-effective manner.”

General Data About Water Utility
- Connections: 400,000
- Staff: 6,865
- Annual O&M Costs: Rs4,284,060,400
- Annual Revenue: Rs8,789,400,000
- Annual Billings: Rs4,640,300,000
- Total Capital Expenditure: Rs7,581,173,100 (Over the last 5 years)
- Average capital expenditure/connection/year: Rs3,790.59
- Source of Investment Funds: All from government grant

UNMETERED CONNECTIONS
Unmetered connections are charged an annual amount equal to 12.5% of annual rental value of the property, which is collected as part of property tax.

METERED CONNECTIONS (Rs/m³)
- Slums, including chawls: Rs2.25/m³
- Nonslum domestic users, schools: Rs3.50/m³
- Dispensaries, municipal swimming pools, halls: Rs10.50/m³
- Small hotels: Rs18.00/m³
- Commercial establishments: Rs25.00/m³

Notes:
1. About 75% of service connections have working meters. Unmetered connections are charged at 12.5% of annual rental value of the property. Domestic users are billed quarterly while all the others are billed monthly.
2. Water bills are paid at the water utility office.
3. There were 10,485 new connections in 2005–2006. The price of a new domestic connection is Rs660 plus Rs250/m beyond 1 meter service pipe length payable prior to connection.

Priority Needs of Utility
1. UFW reduction
2. Distribution management from service reservoir to consumers
3. GIS-based network interlinked with SCADA

Consumer Service
Average monthly consumption is about 156.3 m³ per house connection. The water bill averages Rs708.46 per month per house connection. Water is available at an average of 4 hours a day with an average pressure of 7 meters to most users. Applicants have to wait for about a month for a new connection to be made. A domestic connection fee is paid prior to connection. Water quality is good, with 90% of 64,000 water samples taken during the year passing the residual chlorine test. About 100,000 consumer complaints were recorded during the year. About 680 pipe breaks and 650 leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office, or by letter or telephone. The urban poor are provided with stand post connection in general washing place for groups of five families at subsidized rates.

Performance Highlights
MCGM provides water to its consumers at 191 lpcd at an average of 4 hours per day to all of the population in its area of responsibility. Production is metered and 75% of service connections have working meters. UFW of 13.6% is the second lowest. Financial management is mixed with very good operating ratio of 0.49 but accounts receivable of 11.8 months, which is the second highest. Average tariff of Rs4.60/m³ covers expenses with low UFW. Staff/1,000 connections ratio is the third highest at 17.2. MCGM needs to improve collection and water availability. Full metering is necessary to account for water use and to determine the extent of losses. It also needs to address staff productivity.
MUMBAI WATER SUPPLY

Population: 13,000,000

Production/Distribution

- **Average Daily Production:** 3,200,000 m³
- **Groundwater:** Nil
- **Surface Water:** 100%
- **Treatment Type:** Conventional
- **Storage:** 997,180 m³
- **Service Area:** 439 sq km
- **Distribution Length:** 4,000 km

Service Connections

- **House (37 persons/HC):** 255,897
- **Public Tap:** Nil
- **Commercial:** 48,113
- **Industrial:** 5,216
- **Institutional:** Nil
- **Bulk:** Nil
- **Others (unmetered):** 90,774
- **Total:** 400,000

Service Indicators

- **Service Coverage:** 100.0%
- **Water Availability:** 4 hours/day
- **Per Capita Consumption:** 191 lpcd
- **Average Tariff:** Rs4.60/m³

Efficiency Indicators

- **Unaccounted for Water:** 13.6%
- **Unit Production Cost:** Rs3.67/m³
- **Operating Ratio:** 0.49
- **Accounts Receivable:** 11.8 months
- **Staff/1,000 Connections:** 17.2

Notes:

1. The population is for the present area served by the utility.
2. About 90% of 64,000 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. The city is totally covered by the utility. The urban poor comprise 35% of the population.
5. About 100,000 consumer complaints were registered in 2005–2006.
6. Production is metered and 75% of service connections have working meters.
7. Commercial and industrial include institutional use and billing.
8. Other cost includes transport and chemicals expenses and purchase of raw water.

Data as of 2005–2006.
NAGPUR

Utility Profile

NAGPUR MUNICIPAL CORPORATION

Address: Water Works Department, Pandit Jawaharlal Nehru Marg, Sitabuldi, Nagpur – 12, India
Telephone: 91 712 256 7041 to 44
Fax: 91 712 256 1584
E-mail: nmcnagpur@sify.com
Head: Mr. S. S. Hastak, Executive Engineer (WWD)

Nagpur Municipal Corporation (NMC) was established as a municipal corporation in 1952. It provides water supply services to the city of Nagpur, which has a total population of 2,490,000 people. The present service area of NMC has a population density of 12,454 persons/km2. The utility is responsible for water production, distribution, and source development. It draws water mainly from the Pench and Kanhan Rivers. Billing and collection are handled by the private sector through a management contract; billing is computerized. The utility has a partly developed management information system. It publishes an annual report but it is not available to the public. NMC has a 25-year master development plan covering the period 2005–2031.

Mission Statement

"Water for all and 24/7 supply, 100% coverage in water supply and improved service levels."

General Data About Water Utility

- Connections: 265,231
- Staff: 856
- Annual O&M Costs: Rs424,413,000
- Annual Revenue: Rs561,500,000
- Annual Billings: Rs704,300,000
- Total Capital Expenditure: Rs953,231,000
 (Over the last 5 years)
- Average capital expenditure/connection/year: Rs719.06

Source of Investment Funds: All from internally generated reserves

Tariff Structure

METERED CONNECTIONS

<table>
<thead>
<tr>
<th>1st 10 m3 – Rs3.00/m3; next 30 m3 – Rs3.50/m3; and Rs4.00 above 30 m3 with minimum monthly charges below</th>
<th>Nonresidential (Hospitals, Institutions, and Colonies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 mm</td>
<td>15 mm</td>
</tr>
<tr>
<td>Rs50</td>
<td>Rs500</td>
</tr>
<tr>
<td>20 mm</td>
<td>20 mm</td>
</tr>
<tr>
<td>Rs200</td>
<td>Rs800</td>
</tr>
<tr>
<td>25 mm</td>
<td>25 mm</td>
</tr>
<tr>
<td>Rs500</td>
<td>Rs3,500</td>
</tr>
<tr>
<td>40 mm</td>
<td>40 mm</td>
</tr>
<tr>
<td>Rs1,000</td>
<td>Rs4,500</td>
</tr>
<tr>
<td>50 mm</td>
<td>50 mm</td>
</tr>
<tr>
<td>Rs2,500</td>
<td>Rs9,000</td>
</tr>
</tbody>
</table>

UNMETERED RESIDENTIAL (Rs/month)

<table>
<thead>
<tr>
<th>15 mm*</th>
<th>15 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>300</td>
</tr>
</tbody>
</table>

UNMETERED NONRESIDENTIAL (Rs/month)

<table>
<thead>
<tr>
<th>15 mm*</th>
<th>15 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>300</td>
</tr>
</tbody>
</table>

* In notified slums, rate for 15” diameter connection is charged Rs25/month for houses whose roof has no slab and Rs50/month for those whose roof is with slab.

Notes:

1. About 40% of service connections are metered. Public stand-post users pay on flat rate basis. Billing is done quarterly.
2. Water bills are paid at the water utility office and in banks.
3. There were 4,766 new connections in 2005–2006. The price of a new domestic connection is Rs1,675 payable prior to connection.

Priority Needs of Utility

1. Reduce raw water losses
2. Rehabilitation and upgrade of existing infrastructure
3. Upgrade and improvement of existing distribution network

Consumer Service

Average monthly consumption is about 34.4 m3 per house connection. Water is available at an average pressure of 15 meters to most users. Applicants have to wait for 15 days for a new connection to be made. A domestic connection fee of Rs1,675 is paid prior to connection. Water quality is good, with 92% of 36,500 water samples taken during the year passing the residual chlorine test. About 15,900 consumer complaints were recorded during the year. About 100 pipe breaks and 10,745 leaks were repaired in 2005–2006. Consumers can complain in person at the water utility office, or by letter or telephone. The urban poor are provided with house and public stand-post connections with flat rate monthly charges based on the type of house.

Performance Highlights

NMC provides water to its consumers at 100 lpcd at an average of 5 hours per day to 91.5% of the population in its area of responsibility. Production is metered and 40% of service connections have working meters. UFW of 51.9% is the third highest and should be reduced. While operating ratio is good at 0.76, accounts receivable of 9.6 months are the third highest. Average tariff of Rs6.60/m3 is the fifth highest and is covering expenses well. Staff/1,000 connections ratio is the fifth lowest at 3.2. NMC needs to exert efforts to reduce its UFW and improve collection and water availability. Full metering is necessary to account for water use and to determine the extent of losses if UFW is to be reduced.
NAGPUR WATER SUPPLY
Population: 2,302,990 ¹

Production/Distribution

Average Daily Production 608,220 m³
Groundwater Nil
Surface Water 100%
Treatment Type ² Conventional
Storage 150,790 m³
Service Area ³ 184.9 sq km
Distribution Length 1,700 km

Service Connections

House (10.5 persons/HC) 201,051
Public Tap (75 persons/PT) 3,500
Commercial 7,084
Industrial Nil
Institutional Nil
Bulk Nil
Others 53,596
Total 265,231

Service Indicators

Service Coverage ⁴ 91.5%
Water Availability ⁵ 5 hours/day
Per Capita Consumption 100 lpcd
Average Tariff Rs6.60/m³

Efficiency Indicators

Unaccounted [for] Water ⁶ 51.9%
Unit Production Cost Rs1.91/m³
Operating Ratio 0.76
Accounts Receivable 9.6 months
Staff/1,000 Connections 3.2

Notes:

¹ The population is for the present area served by the utility.
² About 92% of 36,500 samples taken passed the residual chlorine test.
³ The total area of responsibility is 217.6 sq km (km²).
⁴ This is the percentage of the population served by house connections and public taps.
⁵ About 8.5% of the population draw water from tube wells and tankers provided by the utility.
⁶ About 15,900 consumer complaints were registered in 2005–2006.
⁷ Production is metered and 40% of service connections have working meters.
⁸ Other cost includes transport, chemicals, and purchase of raw water.

NASHIK MUNICIPAL CORPORATION
Address: Rajiv Gandhi Bhavan, Sharanpur Road, Nashik – 422 002, India
Telephone: 91 253 258 1252; 257 3151
Fax: 91 253 258 1252
E-mail: eeplanning@dataone.com
Head: Mr. S. V. Khune, Superintending Engineer

Nashik Municipal Corporation (NMC) is a municipal corporation established in 1982. It provides water supply and sewerage services for the municipality of Nashik, which has a total population of 1,350,000 people. The present service area of NMC has a population density of 5,610 persons/km². The utility is responsible for water production, distribution, and source development and draws water from the Darna River and the Gangapur Dam fed by the Godavari River. There is no private sector involvement in the utility’s operations. The utility is following a development plan covering the period 1993–2013. NMC has an annual report for 2005–2006 that is available to the public. Its billing system is computerized. The utility has a partly developed management information system.

Mission Statement

“To provide basic services and adequate, potable water to all.”

General Data About Water Utility

Connections	127,562
Staff	440
Annual O&M Costs	Rs214,585,000
Annual Revenue	Rs182,091,000
Annual Billings	Rs197,748,900
Total Capital Expenditure	Rs809,180,000
Source of Investment Funds	Internally generated reserves

Average capital expenditure/connection/year: Rs1,268.69

Tariff Structure

<table>
<thead>
<tr>
<th>METERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
<tr>
<td>Rs3.50/m³</td>
</tr>
</tbody>
</table>

| FLAT RATE (Based on total time of supply) |
| Two Time | One Time | Rural Water Supply |
| Rs1,080/year | Rs810/year | Rs540/year |

Notes:

1. Institutional, commercial, and domestic consumers are metered, but some house connections pay on flat rate based on the duration of supply. Institutional and commercial connections are billed every 2 months. House connections are billed every 3 months.

2. Water bills are paid at the water utility office.

3. There were 12,688 new connections in 2005–2006. The price of a new domestic connection is Rs1,250 payable prior to connection.

Priority Needs of Utility

1. Full coverage in terms of population and area
2. Reduction in water losses
3. Augmentation of water supply systems for year 2026 requirement

Consumer Service

Average monthly consumption is about 29.2 m³ per house connection. The water bill averages Rs102.19 per month per house connection. Water is available on an average of 3–4 hours a day with an average pressure of 3 meters to most users. Applicants have to wait for about 15 days for a new connection to be made. A connection fee of Rs1,250 has to be paid prior to connection. Water quality is good, with 98% of 9,043 water samples taken during the year passing the residual chlorine test. There were 543 consumers complaints recorded and 7,460 leaks repaired during the year. Consumers can complain in person at the water utility office or by telephone and letter. The urban poor are provided with group connections in tenements. Water supplied through public taps, tankers, and hand pumps are provided free of cost.

Performance Highlights

NMC provides water at 93 lpcd to its consumers at an average of 3–4 hours per day to 92.6% of the population in its area of responsibility. It has the highest UFW at 59.5% among the utilities. However, while production is fully metered, only 80% of total connections are metered, making UFW still an estimate. Financial management is mixed with an operating ratio of 1.18 and accounts receivable equivalent of less than a week. Average tariff of Rs4.32/m³ should be able to cover production cost but is hindered by its high NRW. Staff/1,000 connections ratio is good at 3.4 being the fifth lowest. NMC needs to reduce its NRW, and improve on water availability and its financial management, especially its operating ratio. It should meter production and further improve metering of service connections to account for use.
Area Profile

NASHIK WATER SUPPLY

Population: 1,350,000

<table>
<thead>
<tr>
<th>Production/Distribution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>310,000 m³</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Nil</td>
</tr>
<tr>
<td>Surface Water</td>
<td>100%</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Conventional</td>
</tr>
<tr>
<td>Storage</td>
<td>98,500 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>240.6 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>1,440 km</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Connections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>House (9.25 persons/HC)</td>
<td>121,072</td>
</tr>
<tr>
<td>Public Tap (185 persons/PT)</td>
<td>700</td>
</tr>
<tr>
<td>Commercial</td>
<td>2,797</td>
</tr>
<tr>
<td>Industrial</td>
<td>Nil</td>
</tr>
<tr>
<td>Institutional</td>
<td>2,993</td>
</tr>
<tr>
<td>Bulk</td>
<td>Nil</td>
</tr>
<tr>
<td>Others</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>127,562</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Service Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>92.6%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>3 to 4 hours/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>93 lpcd</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs4.32/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficiency Indicators</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted for Water</td>
<td>59.5%</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs1.90/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>1.18</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>0.03 month</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Notes:

1 The population is for the present area served by the utility.
2 About 98% of 9,043 samples taken passed the residual chlorine test.
3 This is also the total area of responsibility.
4 This is the percentage of the population served by house connections and public taps.
5 About 2% of the population draw water from tube wells and tankers provided by the utility.
6 The urban poor comprise 15% of the population.
7 Commercial and industrial include institutional use and billing.
8 Other cost includes transport, chemicals, and purchase of raw water.

RAJKOT MUNICIPAL CORPORATION

RAJKOT

Utility Profile

Address: Dr. Ambedkar Bhavan, Dhebarbhai Road, Rajkot – 360 001, India
Telephone: 91 281 222 4133
Fax: 91 281 222 4258
E-mail: mc_rmc@yahoo.co.in
Head: Mr. M. R. Kamaliya, Additional City Engineer

Rajkot Municipal Corporation (RMC) is a municipal corporation established in 1973. It provides water supply and sewerage services for the city of Rajkot, which has a total population of 1,002,000 people. The present service area of RMC has a population density of 9,346 persons/km². The utility is responsible for water production, distribution, and source development. RMC draws water mainly from the Bhadar, Nyari, Aji, and Narmada Rivers. The private sector is involved in pump operations, mains and lines maintenance, sluice valve operations, and leak repair through service contracts. The utility is following a development plan covering the period 2005–2011. The latest annual report is for 2003, which is available to the public. Its billing, accounting, and redressal systems are computerized. The utility has a partly developed management information system.

Mission Statement

"By ensuring optimum use of resources and sustainability of urban environment to provide efficient and cost-effective basic services to each and every citizen of Rajkot and facilitating economic, social, cultural, and educational development."

General Data About Water Utility

Connections: 193,879
Staff: 211
Annual O&M Costs: Rs148,500,000
Annual Revenue: Rs92,400,000
Annual Billings: Rs203,833,390
Total Capital Expenditure: Rs792,254,000
Average capital expenditure/connection/year: Rs817.27
(Over the last 5 years)
Source of Investment Funds: 90% internally generated reserves; 2% government grant; 8% commercial loan

Tariff Structure

<table>
<thead>
<tr>
<th>METERED*</th>
<th>Government School</th>
<th>Residential</th>
<th>Any Other Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gov. School</td>
<td>Rs6.00/m³</td>
<td>Rs12.00/m³</td>
<td>Rs24.00/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FLAT RATE (Rs/month) (Based connection size and category)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size (mm)</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>
* Minimum charge is based on flat monthly rate according to category and size

Notes:

1. Only 715 institutional, commercial, industrial, and high-rise residential buildings are metered. Residential house connections pay a monthly flat rate.
2. Water bills are paid at the water utility office and city civic centers.
3. There were 7,000 new connections in 2005–2006. The price of a new domestic connection is Rs1,850 payable prior to connection.

Priority Needs of Utility

1. Source augmentation
2. Leak minimization
3. 100% cost recovery

Consumer Service

Average monthly consumption is about 15.1 m³ per house connection. The water bill averages Rs50 per month per house connection. Water is available on an average of merely 20 minutes a day with an average pressure of 10 meters to most users. Applicants have to wait for about 3 days for a new connection to be made. A connection fee of Rs1,850 has to be paid prior to connection. Water quality is fair, with 88% of 58,400 water samples taken during the year passing the residual chlorine test. There were 4,568 consumers complaints recorded, and 23,500 pipe breaks and leaks repaired during the year. Consumers can complain in person at the water utility office and at the city civic center, or by telephone. The urban poor are provided with free water supplied through public stand posts and tankers.

Performance Highlights

RMC provides water at 101 lpcd to its consumers at an average of 20 minutes per day to 98.1% of the population in its area of responsibility. UFW is 23.5% with practically no metering for both production and service connections, making the UFW an estimate. Financial management needs improvement with an operating ratio of 1.61 and accounts receivable equivalent of 6.6 months. Average tariff of Rs5.07/m³ is not covering production cost. Staff/1,000 connections ratio is good at 1.1 being the second lowest. RMC needs to address its very low water availability, and high operating ratio and accounts receivable equivalent. It should meter production and service connections to account for use and determine its losses to reduce UFW.
RAJKOT WATER SUPPLY
Population: 980,000

Production/Distribution
- Average Daily Production: 143,836 m³
- Groundwater: Nil
- Surface Water: 100%
- Treatment Type: Conventional
- Storage: 198,000 m³
- Service Area: 104.9 sq km
- Distribution Length: 1,850 km

Service Connections
- House (5 persons/HC): 192,000
- Public Tap (20 persons/PT): 1,150
- Commercial: 300
- Industrial: 180
- Institutional: 85
- Bulk: 150
- Others: 14
- Total: 193,879

Service Indicators
- Service Coverage: 98.1%
- Water Availability: 0.33 hour/day
- Per Capita Consumption: 101 lpcd
- Average Tariff: Rs5.07/m³

Efficiency Indicators
- Unaccounted for Water: 23.5%
- Unit Production Cost: Rs2.83/m³
- Operating Ratio: 1.61
- Accounts Receivable: 6.6 months
- Staff/1,000 Connections: 1.1

Notes:
1. The population is for the present area served by the utility.
2. About 8% of 58,400 samples taken passed the residual chlorine test.
3. This is also the total area of responsibility.
4. This is the percentage of population served by house connections and public taps. Those not served by the utility draw water from tube wells. The urban poor comprise 2% of the population.
5. About 4,568 consumer complaints were registered in 2005–2006.
6. Production is not metered and only 0.4% of service connections have working meters. About 23,500 pipe breaks and leaks were repaired during the year.
7. Commercial and industrial include institutional use and billing.
8. Other includes costs of transport, chemicals, and purchase of raw water.

SURAT MUNICIPAL CORPORATION

Address: Hydraulic Department, Surat Municipal Corporation, Muglisara, Surat – 395 003, India
Telephone: 91 261 245 3750 to 56
Fax: 91 261 245 1935; 242 2110
E-mail: hydeng@suratmunicipal.gov.in
Head: Mr. B. I. Dalal, Hydraulic Engineer

Surat Municipal Corporation (SMC) is a municipal corporation established in 1966. Its Hydraulic Department provides water supply services for the city of Surat, which now has a total population of 3,817,000 people with the recent merging of 8 nagarpalikas and 27 gram panchayats. The present service area of SMC has a population density of 26,305 persons/km². The utility is responsible for water production, distribution, and source development. SMC draws water mainly from the River Tapi and from two radial wells near the river. The private sector is involved in the operation and maintenance of water treatment plants and valve operation, as well as leak repair through service contracts. The utility is following a 25-year master development plan covering the period 1995–2021. The latest annual report is for 2005–2006 and is available to the public. Its billing, accounting, and water treatment operations are computerized. The utility has a partly developed management information system.

Mission Statement

“To provide safe and potable water with sufficient pressure to every citizen of Surat at his doorstep by water supply pipeline network.”

General Data About Water Utility

Connections	310,836
Staff	532
Annual O&M Costs	Rs368,228,000
Annual Revenue	Rs365,414,000
Annual Billings	Rs365,414,000
Total Capital Expenditure	Rs1,712,854,000
Average capital expenditure/connection/year	Rs1,102.09

Source of Investment Funds: All from internally generated reserves

Tariff Structure

<table>
<thead>
<tr>
<th>METERED</th>
<th>UNMETERED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hospitals, dispensaries, nursing homes, nonwater-based industries,</td>
<td>Domestic unmetered connections</td>
</tr>
<tr>
<td>social halls</td>
<td>Rs240/annum</td>
</tr>
<tr>
<td>Temporary connection for construction, photo studios, restaurants/</td>
<td>Religious/educational unmetered</td>
</tr>
<tr>
<td>canteens</td>
<td>Rs240/annum</td>
</tr>
<tr>
<td>Industrial, manufacturing, sports clubs, guesthouses, hotels (up to</td>
<td>connection up to 1-1/2" connection</td>
</tr>
<tr>
<td>3 star)</td>
<td>Rs240/annum</td>
</tr>
<tr>
<td>Hotels (4 star–5 star), water/amusement park, dyeing/printing houses</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Only commercial, industrial, and institutional connections are metered, comprising less than 2% of total connections. Domestic connections pay annually as part of municipal tax. Metered connections pay monthly.
2. Water bills are paid at the water utility office and city civic centers.
3. There were 12,288 new connections in 2005–2006. The price of a new domestic connection is Rs50 for application form plus Rs100 for boring charges plus Rs195 per meter of service pipe.

Priority Needs of Utility

1. Reducing pollution of River Tapi, its present source of raw water
2. Exploring alternate sources of water
3. Rationalization of water tariff for sustainability
4. Exploring alternate sources of water

Consumer Service

Average monthly consumption is about 55.5 m³ per house connection. The water bill averages Rs44.70 per month per house connection. Water is available on an average of 2–3 hours a day with an average pressure of 2 meters to most users. Applicants have to wait for about 7 days for a new connection to be made. A connection fee of Rs150 (plus Rs195 per meter of service pipe length) has to be paid prior to connection. Water quality is good, with 99% of 109,500 water samples taken during the year passing the residual chlorine test. There were 5,127 consumer complaints recorded, and 11,180 pipe breaks and leaks repaired during the year. Consumers can complain in person at the water utility office or by telephone, letter, and e-mail. The urban poor are provided with free water supplied through public stand posts and tankers.

Performance Highlights

SMC provides water at an average of 2–3 hours per day to 77.4% of the population in its area of responsibility. With practically no metering for both production and service connections, no estimates of UFW and average per capita consumption was made. Financial management needs improvement with an operating ratio of 1.01 and accounts receivable equivalent of 3.1 months. Average tariff of Rs1.66/m³ could not cover production cost. Staff/1,000 connections ratio is good at 1.7 being the third lowest. SMC needs to address its very low water availability and accounts receivable equivalent. It should meter production and service connections to account for use and determine its losses to reduce UFW.
Area Profile

SURAT WATER SUPPLY
Population: 2,954,000

Production/Distribution

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>554,685 m³</td>
</tr>
<tr>
<td>Groundwater</td>
<td>7%</td>
</tr>
<tr>
<td>Surface Water</td>
<td>93%</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Conventional</td>
</tr>
<tr>
<td>Storage</td>
<td>34,620 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>112.3 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>2,550 km</td>
</tr>
</tbody>
</table>

Service Connections

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>House (10 persons/HC)</td>
<td>303,930</td>
</tr>
<tr>
<td>Public Tap (125 persons/PT)</td>
<td>916</td>
</tr>
<tr>
<td>Commercial</td>
<td>3,583</td>
</tr>
<tr>
<td>Industrial</td>
<td>2,250</td>
</tr>
<tr>
<td>Institutional</td>
<td>157</td>
</tr>
<tr>
<td>Bulk</td>
<td>Nil</td>
</tr>
<tr>
<td>Others</td>
<td>Nil</td>
</tr>
<tr>
<td>Total</td>
<td>310,836</td>
</tr>
</tbody>
</table>

Service Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>77.4%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>2–3 hours/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>no data</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs1.66/m³</td>
</tr>
</tbody>
</table>

Efficiency Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted for Water</td>
<td>no data</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs1.82/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>1.01</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>3.1 months</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>1.7</td>
</tr>
</tbody>
</table>

Notes:

1. The population is for the present area served by the utility.
2. About 99% of 109,500 samples taken passed the residual chlorine test.
3. The total area of responsibility is 334.3 sq km (km²).
4. This is the percentage of population served by house connections and public taps. Those not served by the utility draw water from tube wells. The urban poor comprise 4% of the population.
5. About 5,217 consumer complaints were registered in 2005–2006.
6. While production is metered only 2% of service connections have working meters.
7. About 11,180 pipe breaks and leaks were repaired during the year.
8. Other includes costs of transport and chemicals.

Surat 69
VARANASI

Utility Profile

VARANASI JAL SANSTHAN

- **Address**: Varanasi Jal Sansthan, Bhelupura, Varanasi, India
- **Telephone**: 91 542 227 6339
- **Fax**: 91 542 227 5827
- **E-mail**: gm@varanasijalsansthan.com
- **Head**: Mr. R. K. Tripathi, General Manager

Varanasi Jal Sansthan (VJS) is an autonomous local body for water supply services formed in 1982. It supplies water to the city of Varanasi, which has a total population of 1,600,000 people. The present service area of VJS has a population density of 20,681 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from the Ganga River and from 167 tube wells. The private sector is involved in the operation and maintenance of the tube wells and vehicles, and cleaning works of campus through service contracts. The utility has no master development plan nor does it have an annual report or a management information system. Its billing system is computerized.

Mission Statement

“24 x 7 water supply”

General Data

About Water Utility

- **Connections**: 114,907
- **Staff**: 676
- **Annual O&M Costs**: Rs 182,856,000
- **Annual Revenue**: Rs 140,678,000
- **Annual Billings**: Rs 218,700,000
- **Total Capital Expenditure** (Over the last 5 years): Rs 64,741,000
- **Average capital expenditure/connection/year**: Rs 112.68
- **Source of Investment Funds**: 72% internally generated reserves; 6% government grant; 22% from members of parliament and District Urban Development Agency

Tariff Structure

<table>
<thead>
<tr>
<th>Category</th>
<th>Rate (Rs/m³)</th>
<th>Minimum (Rs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>2.00</td>
<td>Rs360/year</td>
</tr>
<tr>
<td>Municipal work</td>
<td>2.00</td>
<td>Rs60/month</td>
</tr>
<tr>
<td>Cantonment Board</td>
<td>3.00</td>
<td>Rs75/month</td>
</tr>
<tr>
<td>Government</td>
<td>4.00</td>
<td>Rs100/month</td>
</tr>
<tr>
<td>Commercial</td>
<td>6.00</td>
<td>Rs300/month</td>
</tr>
<tr>
<td>Industrial</td>
<td>10.00</td>
<td>Rs400/month</td>
</tr>
</tbody>
</table>

Notes:
1. Institutional and commercial connections are metered but none are working. Most unmetered house connections pay on flat rate based on annual rental value starting at Rs480/annum. Institutional and commercial connections are billed every 2 months. House connections are billed annually.
2. Water bills are paid at the water utility office and ward counters.
3. There were 1,303 new connections in 2005–2006. The price of a new domestic connection is Rs 2,375 payable prior to connection.

Priority Needs of Utility

1. Revenue – billing and collection
2. Regular supply of potable water to citizens
3. Upgrade, extension, and improved maintenance of existing water supply

Consumer Service

Average monthly consumption is about 40.1 m³ per house connection. The water bill averages Rs 104.05 per month per house connection. Water is available on an average of 7 hours a day with an average pressure of 3 meters to most users. Applicants have to wait for about a week for a new connection to be made. A connection fee of Rs 2,375 has to be paid prior to connection. Water quality is good, with 94% of 9,900 water samples taken during the year passing the residual chlorine test. There were 5,370 consumer complaints recorded, and 3,042 pipe breaks and leaks repaired during the year. Consumers can complain in person at the water utility office or by telephone and letter. The utility has no specific policy for providing water supply to the urban poor communities.

Performance Highlights

VJS provides water at 147 lpcd to its consumers at an average of 7 hours per day to 77.7% of the population in its area of responsibility. UFW is 30.0%, which is about average. Production is not metered and while 69% of service connections are metered, none of them are working. Operating ratio of 1.30 and accounts receivable equivalent of 4.9 months need improvement. Average tariff of Rs 3.17/m³ seems not enough to cover production cost. Staff/1,000 connections ratio is better than average at 5.9. VJS needs to address its low water availability and further improve on its accounts receivable equivalent and operating ratio. It should meter production and service connections to account for use and determine its losses to reduce UFW. Lower-than-average coverage also needs to be addressed.
VARANASI WATER SUPPLY
Population: 1,489,000

Production/Distribution

Average Daily Production 270,000 m³
Groundwater 54%
Surface Water 46%
Treatment Type
Conventional
Storage 79,800 m³
Service Area 72 sq km
Distribution Length 590 km

Service Connections

House (10 persons/HC) 110,344
Public Tap (100 persons/PT) 1,402
Commercial 3,161
Industrial Nil
Institutional Nil
Bulk Nil
Others Nil
Total 114,907

Service Indicators

Service Coverage 77.7%
Water Availability 7 hours/day
Per Capita Consumption 147 lpcd
Average Tariff Rs3.17/m³

Efficiency Indicators

Unaccounted for Water 30.0%
Unit Production Cost Rs2.07/m³
Operating Ratio 1.30
Accounts Receivable 4.9 months
Staff/1,000 Connections 5.9

Notes:
1. The population is for the present area served by the utility.
2. About 94% of 9,900 samples taken passed the residual chlorine test.
3. The total area of responsibility is 80 sq km (km²).
4. This is the percentage of population served by house connections and public taps.
 About 15% of the population draw water from tube wells with hand pumps provided by the utility.
5. About 5,370 consumer complaints were registered in 2005–2006.
6. Production is not metered and while 69% of service connections are metered, none are working.
 About 3,042 pipe breaks and leaks were repaired during the year.
7. Commercial and industrial include institutional use and billing.
8. Other includes costs of transport and chemicals.

VIJAYAWADA MUNICIPAL CORPORATION
Address: Jawaharlal Nehru Buildings, Vijayawada – 520 001, India
Telephone: 91 866 242 2400
Fax: 91 866 242 4338
E-mail: ourvmc@yahoo.com
Head: Mr. N. Gulzar, Municipal Commissioner

Vijayawada Municipal Corporation (VMC) was established as a municipal corporation in 1983. It supplies water and sewerage services to the city of Vijayawada, which has a total population of 851,000 people. The present service area of VMC has a population density of 16,875 persons/km2. The utility is responsible for water production, distribution, and source development. It draws water solely from the Krishna River. The private sector is involved in billing and collection through a service contract. The utility follows a 15-year master development plan from 2006 to 2020. It does not have an annual report nor a management information system. Its billing and accounting systems are computerized.

Mission Statement
“To provide 100% coverage by 2015, access to the poor by 2020. To achieve 24 hours supply for the city by 2015 and for the poor by 2020. To reduce NRW to 30% in 2010, 20% in 2015, and 10% in 2020. To achieve 80% cost recovery in 2010 and 100% in 2015.”

General Data About Water Utility

Connections	78,298
Staff	445
Annual O&M Costs	Rs104,076,190
Annual Revenue	Rs91,283,640
Annual Billings	Rs79,784,020
Total Capital Expenditure	No data
Average capital expenditure/connection/year	No data
(Over the last 5 years)	No data
Source of Investment Funds	No data

Tariff Structure

<table>
<thead>
<tr>
<th>METERED</th>
<th>Nondomestic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td></td>
</tr>
<tr>
<td>1st 3 m3</td>
<td>Rs100 minimum</td>
</tr>
<tr>
<td>Above 3 m3</td>
<td>Rs100 + Rs8.25/m3</td>
</tr>
<tr>
<td>Nondomestic</td>
<td></td>
</tr>
<tr>
<td>1st 3 m2</td>
<td>Rs100 minimum</td>
</tr>
<tr>
<td>3 m2 – 25 m2</td>
<td>Rs100 + Rs15.75/m2</td>
</tr>
<tr>
<td>25 m2 – 50 m2</td>
<td>Rs100 + Rs18.40/m2</td>
</tr>
<tr>
<td>50 m2 – above</td>
<td>Rs100 + Rs21.00/m2</td>
</tr>
<tr>
<td>FLAT RATE</td>
<td></td>
</tr>
<tr>
<td>Residential HSC (Regular)</td>
<td>Rs80.00/month</td>
</tr>
<tr>
<td>HSC (NSDP & BPL Card Holders)</td>
<td>Rs50.00/month</td>
</tr>
</tbody>
</table>

Notes:
1. Metered connections are billed monthly while unmetered connections paying flat rates are billed every 6 months.
2. Water bills are paid at E-Seva where residents pay their taxes.
3. There were 3,769 new connections in 2005–2006. The price of a new domestic connection is Rs$5,500 payable prior to connection. The poor pays Rs$1,200 payable over 12 months.

Priority Needs of Utility

1. Every house to be provided with a tap
2. Accountability
3. Decrease in NRW

Consumer Service
Average monthly consumption is about 26.3 m3 per house connection. The water bill averages Rs$61.09 per month per house connection. Water is available on an average of 2–4 hours a day with an average pressure of 1–6 meters to most users. Applicants have to wait for about 7 days for a new connection to be made. A connection fee of Rs$5,500 has to be paid prior to connection. Water quality is good, with 90% of 242,600 water samples taken during the year passing the residual chlorine test. There were 11,500 consumers complaints recorded, and 8,900 pipe breaks and 11,500 leaks repaired during the year. Consumers can complain in person at the water utility office or by telephone and letter. The utility collects lower connection and monthly charges for the urban poor.

Performance Highlights
VMC provides water at 158 lpcd to its consumers at an average of 2–4 hours per day to 70.5% of the population in its area of responsibility. UFW is 23.8% but production is not metered and only 6.0% of service connections have working meters. Financial management is mixed with an operating ratio of 1.14 and accounts receivable equivalent of 1.60 months, which is the fourth lowest. Average tariff of Rs$2.18/m3 is not enough to cover production cost. Staff/1,000 connections ratio is fair at 5.70, which is at the median. VMC needs to address its low water availability and reduce its operating ratio to less than about 0.75. It should meter production and service connections to account for use and determine its losses to reduce UFW. Lower-than-average coverage also needs to be addressed.
VIJAYAWADA WATER SUPPLY
Population: 675,000

Production/Distribution
Average Daily Production 131,833 m3
Groundwater Nil
Surface Water 100%
Treatment Type Conventional
Storage 58,560 m3
Service Area 40 sq km
Distribution Length 400 km

Service Connections
House (8 persons/HC) 67,323
Public Tap (55 persons/PT) 4,700
Commercial 2,437
Industrial 43
Institutional 60
Bulk 2,774
Others 961
Total 78,298

Service Indicators
Service Coverage 70.5%
Water Availability 2 to 4 hours/day
Per Capita Consumption 158 lpcd
Average Tariff Rs2.18/m3

Efficiency Indicators
Unaccounted for Water 23.8%
Unit Production Cost Rs2.16/m3
Operating Ratio 1.14
Accounts Receivable 1.6 months
Staff/1,000 Connections 5.7

Notes:
1 The population is for the present area served by the utility.
2 About 90% of 242,600 samples taken passed the residual chlorine test.
3 The total area of responsibility is 60 sq km (km2).
4 This is the percentage of population served by house connections and public taps. About 9% of
the population draw water from tube wells and tankers provided by the utility.
The urban poor comprise 30% of the population.
5 About 11,500 consumer complaints were registered in 2005–2006.
6 Production is not metered and only 6% of service connections have working meters.
About 11,500 pipe breaks and leaks were repaired during the year.
7 Commercial and industrial include institutional use and billing.
8 Other includes costs of transport and chemicals.

VIKAHAPATNAM

Utility Profile

GREATER VIKAHAPATNAM MUNICIPAL CORPORATION

Address: Tenneti Bhavan, Asilmetta, Visakhapatnam – 02, India
Telephone: 91 891 274 6300
Fax: 91 891 256 8545
E-mail: cemcv@rediffmail.com
Head: Mr. Mukhesh Kumar Meena, Municipal Commissioner

Greater Visakhapatnam Municipal Corporation (GVMC) was established as a municipal corporation in 1901. It provides water supply and sewerage services to the Greater Visakhapatnam area, which has a total population of 1,523,000 people. The present service area of GVMC has a population density of 5,750 persons/km². The utility is responsible for water production, distribution, and source development. It draws water from the Gostani, Godavari, Sarada, and Yeluru Rivers and from 5,053 tube wells. There is no private sector involvement in the utility’s operations. The utility follows a 15-year master development plan covering 2006–2020. It has an annual report for 2005–2006 that is available to the public and a partly developed management information system. Its billing and accounting systems, as well as the handling and monitoring of complaints and grievances, are computerized.

Mission Statement

“To provide wholesome round-the-clock water supply to every household at affordable cost even to the poor.”

General Data

Connections: 85,668
Staff: 466
Annual O&M Costs: Rs411,600,000
Annual Revenue: Rs525,000,000
Annual Billings: Rs609,700,000
Total Capital Expenditure: Rs1,667,000,000
Average capital expenditure/connection/year: Rs3,891.77
Source of Investment Funds: 60% internally generated reserves; 40% bonds

Tariff Structure

<table>
<thead>
<tr>
<th>Category</th>
<th>Minimum</th>
<th>Rates (beyond minimum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residential</td>
<td>Rs4.00 up to 5 m³</td>
<td>Rs4.00/m³ beyond 5 m³</td>
</tr>
<tr>
<td>Apartments</td>
<td>Rs4.00 up to 5 m³</td>
<td>Rs4.00/m³ for 5 m³ – 20 m³</td>
</tr>
<tr>
<td>Bulk water</td>
<td>Rs30.00/m³ up to agreed limit; Rs60.00/m³ beyond limit</td>
<td></td>
</tr>
<tr>
<td>UNMETERED (Flat rate)</td>
<td>Rs80.00/tap/month</td>
<td></td>
</tr>
</tbody>
</table>

Notes:

1. House connections pay on flat rate and are billed every 3 months. The rest are metered, with bulk supplies billed monthly and commercial apartments every 3 months.

2. Water bills are paid at the bank and E-seva centers.

3. There were 2,500 new connections in 2005–2006. The price of a new domestic connection is Rs2,000 payable prior to connection.

Priority Needs of Utility

1. Water supply improvement in quantity and quality
2. Refurbish and extend the distribution system at uniform service levels
3. 100% coverage with 24/7 supply

Consumer Service

Average monthly consumption is about 30.4 m³ per house connection. The water bill averages Rs56.12 per month per house connection. Water is available on an average of 1 hour a day with an average pressure of 4.0 meters to most users. Applicants have to wait for about a week for a new connection to be made. A connection fee of Rs2,000 has to be paid prior to connection. Water quality is good, with practically all of 730,000 water samples taken during the year passing the residual chlorine test. There were 6,180 consumer complaints recorded, and 5,000 pipe breaks and 5,112 leaks repaired during the year. Consumers can complain in person at the water utility office or by telephone, e-mail, SMS text messaging, and letter. The utility allows the urban poor to pay only Rs1,200 for connection fee payable in 12 monthly installments.

Performance Highlights

GVMC provides water at 124 lpcd to its consumers at an average of only 1 hour per day to 49.2% of the population in its area of responsibility. UFW is 14.5% but production is not metered and only 1.3% of service connections have working meters. Financial management is good, with an operating ratio of 0.78 and accounts receivable equivalent of 3.3 months. Average tariff of Rs8.55/m³ is enough to cover production cost. Staff/1,000 connections ratio is high at 5.4, which is the median. GVMC needs to address its low water availability and population coverage, which is the lowest among the utilities. It should meter production and service connections to account for use and determine its losses to reduce UFW further.
Area Profile

VISAKHAPATNAM WATER SUPPLY
Population: 920,000

Production/Distribution

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Daily Production</td>
<td>228,451 m³</td>
</tr>
<tr>
<td>Groundwater</td>
<td>20%</td>
</tr>
<tr>
<td>Surface Water</td>
<td>80%</td>
</tr>
<tr>
<td>Treatment Type</td>
<td>Conventional</td>
</tr>
<tr>
<td>Storage</td>
<td>86,420 m³</td>
</tr>
<tr>
<td>Service Area</td>
<td>160 sq km</td>
</tr>
<tr>
<td>Distribution Length</td>
<td>1,035 km</td>
</tr>
</tbody>
</table>

Service Connections

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>House (5 persons/HC)</td>
<td>76,468</td>
</tr>
<tr>
<td>Public Tap (50 persons/PT)</td>
<td>8,122</td>
</tr>
<tr>
<td>Commercial</td>
<td>134</td>
</tr>
<tr>
<td>Industrial</td>
<td>63</td>
</tr>
<tr>
<td>Institutional</td>
<td>62</td>
</tr>
<tr>
<td>Bulk</td>
<td>818</td>
</tr>
<tr>
<td>Others</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>85,668</td>
</tr>
</tbody>
</table>

Service Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Service Coverage</td>
<td>49.2%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>1 hour/day</td>
</tr>
<tr>
<td>Per Capita Consumption</td>
<td>124 lpcd</td>
</tr>
<tr>
<td>Average Tariff</td>
<td>Rs8.55/m³</td>
</tr>
</tbody>
</table>

Efficiency Indicators

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unaccounted for Water</td>
<td>14.5%</td>
</tr>
<tr>
<td>Unit Production Cost</td>
<td>Rs4.94/m³</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>0.78</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>3.3 months</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Notes:

1. The population is for the present area served by the utility.
2. Most almost 730,000 samples taken, except for 83 samples, passed the residual chlorine test.
3. Total area of responsibility is 533 sq km (km²).
4. This is the percentage of population served by house connections and public taps.
 About 13% of the population draw water from tube wells and tankers provided by the utility.
5. The urban poor comprise 7% of the population.
6. About 6,180 consumer complaints were registered in 2005–2006.
7. Production is not metered and only 1.3% of service connections have working meters.
 About 5,000 pipe breaks and 5,112 leaks were repaired during the year.
8. Commercial and industrial include institutional use and billing.
9. Other includes costs of transport, chemicals, and water cess payment.

APPENDICES
APPENDIX 1

Indian Water Utilities Data Book

WATER UTILITY QUESTIONNAIRE

Date: ______________________

GENERAL UTILITY INFORMATION

1.1 Name of Water Utility: __
 Short Name/Acronym: __

1.2 Address: __

1.3 Telephone Number(s): __________ 1.4 Fax Number(s): __________

1.5 E-mail address: __

1.6 Head of the Water Utility: Name: ____________________________
 Title: ____________________________

1.7 Year utility was formed: __________

1.8 Type of water utility:
 ____ Municipal Corporation/Council
 ____ State Board
 ____ City Board
 ____ Statewide agency
 ____ Private water utility
 ____ Municipal Corporation/Council (ring-fenced operations)
 ____ Others (Please specify) _______________

1.9 Type of services provided by utility:
 ____ Water supply services
 ____ Wastewater and sewerage services
 ____ Others (Please specify) _______________

1.10 Is there Private Sector Involvement in the Water Utility? ____ Yes ____ No

 If Yes, in what aspect(s)? ____ Source Development ____ Production
 ____ Distribution ____ Management
 ____ Billing & Collection ____ Leak Repair
 ____ Other (Please specify) _______________

1.11 Type of private sector involvement:
 ____ Service contract ____ Management contract
 ____ Lease contract ____ Concession contract
 ____ BOT, BOOT contract ____ Full private ownership

1.12 Latest annual report available ____ none ______ (indicate year if available)

1.13 Is the annual report available to the general public? ____ Yes ____ No
1.14 Management information system:
___ well developed
___ partly developed
___ non-existent

1.15 What aspects of the water utility’s operation are computerized or automated?
___ None
___ Billing
___ Accounting
___ Pumping
___ Treatment
___ Others ________________________

1.16 Does the utility have a Master Development Plan?
___ Yes
___ No
If Yes, indicate period covered. Year _____ to Year _____

1.17 Does the utility have a mission statement?
___ Yes
___ No
If Yes, please provide the mission statement.

1.18 Top three (3) priority needs of the utility:
1. __
(As seen by management)
2. __
3. __

SERVICE AREA

2.0 Water Utility Responsibility:

2.1 Number of cities/towns served by utility _______

2.2 Name of cities/towns served __

2.3 Nature of service area
___ urban
___ rural
___ urban & rural

2.4 Province/state where utility is located _____________________

2.5 Size of utility’s area of responsibility ______ sq. km.

2.6 Size of utility’s present service area ______ sq. km.

2.7 Population of utility’s area of responsibility _______

2.8 Population of utility’s present service area _______

2.9 Population served with house connections _______
Population served with public taps _______
Population served by tankers _______
Population served by hand pumps _______

2.10 Where do households not connected to or served by your utility get their water supply?
___ Other piped water service providers
___ Tube wells
___ Dug wells
___ Ponds
___ Rain collectors
___ Others (please specify) ____________________
PRODUCTION

3.0 Utility is responsible for ___ Production ___ Distribution ___ Source Development

3.1 Sources of Water: Annual production volume (cu m/year)

___ Surface water ___________________
___ Groundwater ___________________
___ Other (please specify) _______________ ___________________

Total production: ___________________

3.2 Is total production all metered? (ex treatment plant) ___Yes ___ No

If No, what proportion is metered? _____ %

How is unmetered volume estimated?
__

3.3 Do you buy bulk water for distribution? Raw Water ___ Yes ___ No

Treated Water ___ Yes ___ No

3.4 Main methods of treatment used:

___ none ___ disinfection
___ filtration ___ sedimentation
___ aeration ___ desalination
___ other (please specify) ______________________

3.5 Total production capacity: _________ cu m/day

3.6 Storage capacity in network: _________ cu m

DISTRIBUTION AND CONSUMPTION

4.10 Total Service Connections

4.11 Number of House Connections (HC) Average number of people per HC

4.12 Number of Public Taps (PT) Average number of people per PT

4.13 Number of Commercial Connections

4.14 Number of Industrial Connections

4.15 Number of Institutional Connections

4.16 Number of Bulk Connections (Apartments/condominiums)

4.17 Number of Bulk Connections (Others)

4.18 Number of other Connections (accounts served by tankers or handpumps)

4.19 Number of connections metered

4.20 Proportion of metered connections with operating meters: ____ %
4.30 Total length of distribution network: ________ km

4.31 Average age of distribution pipes: ________ years

5.0 Water Consumption (annual volume of water billed/sold in 2006)

<table>
<thead>
<tr>
<th></th>
<th>Metered (cu.m.)</th>
<th>Estimated* (cu.m.)</th>
<th>Total (cu.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Total for all HC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.2 Total for all PT/SP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.3 Total for all commercial use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.4 Total for all industrial use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.5 Total for all institutional use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.6 Total for all bulk use (apt)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.7 Total for all bulk use (others)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.8 Total for all other use</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.9 Grand Total</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Estimated consumption refer to unmetered consumption (normally flat rate connections)

WATER SERVICE PERFORMANCE (annual values for 2006)

6.1 Number of connections with intermittent supply: ______ connections

6.2 Typical duration of supply: ______ hours/day

6.3 Average mains water pressure at consumer points: ______ meters

6.4 Number of pipe breaks in the distribution network ______

6.5 Number of meters replaced/repaired ______

6.6 Required number of samples for residual chlorine: ______

6.7 Number of samples for residual chlorine test taken: ______

6.8 Number of samples passing residual chlorine test: ______

STAFF INFORMATION

7.1 Number of staff (in full-time equivalent – FTE)

- Corporate services (management, admin., finance, technical, etc) ______
- Water supply operations (O&M, customer service, support services) ______
- Other non-water supply services (wastewater, sewerage, drainage) ______

Total number of staff: ______

7.2 Number of personnel in contracted out services: ______

7.3 Number of staff attending training in 2006: ______

7.4 Total number of training days (sum of staff x training days attended): ______

7.5 Proportion of operating budget spent for training and human resources development: ______ %

7.6 Average annual salary of the three highest paid full-time management personnel:

Rs ______

CUSTOMER SERVICE

8.11 Number of new connections installed in 2006: ______
8.12 Average waiting time for a new connection __________
8.13 Number of connections disconnected in 2006 __________
8.14 Number of leaks reported/number of leaks repaired in 2006 _______/______
8.15 Number of customer complaints recorded in 2006: __________
8.16 Means of making complaints: ____ Letter ____ Telephone ____ In person
___ E-mail ___ SMS (txt msg) ___ Other __________
8.17 How much are the typical connection charges for new customers?
• Domestic Rs. ___________
8.18 How are new domestic connection charges paid?
___ all at the start ___ over 12 months or less ___ over more than 12 months
8.19 Does your water utility have a policy for providing water supply to the urban poor?
___ Yes ___ No If Yes, briefly state the policy. _____________________________
8.20 What percentage of the population in the service comprise the urban poor? ______
8.21 Does the ULB have a citizen charter? ____ Yes ____ No
If yes, what does the charter say about water supply services? ____________________________
8.22 Does the ULB carry out citizen satisfaction surveys? ____ Yes ____ No
If yes, how often? ________________. When was the last survey done? ______________
8.23 Does the ULB have a time frame for grievance redressal? ____ Yes ____ No
If yes, what is the maximum time a grievance should be redressed? ____________________
8.24 Does the ULB have community participation in its water supply services?
____ Yes ____ No If yes, describe how it is done. _____________________________
8.25 Does the ULB have a RWA feedback mechanism in place? ____ Yes ____ No

FINANCIAL DATA

9.11 Water billing/sales (annual for year 2006) (Rupees)
• Total for all HC Rs. __________
• Total for all PT/SP Rs. __________
• Total for all commercial use Rs. __________
• Total for all industrial use Rs. __________
• Total for all institutional use Rs. __________
• Total for all bulk use (apartments) Rs. __________
• Total for all bulk use (others) Rs. __________
• Total for all other use Rs. __________
9.12 Basis for Billing for Water
Consumers Pay on: ___ Metered Use ___ Flat Rate

9.13 How frequent are consumers billed?
___ Monthly ___ Every 2 months ___ Others _____________

9.14 Methods of Payment
Water bills are paid through ___ Bill Collector ___ Water Utility Office
___ Bank ___ Automated Teller Machine
___ Post Office ___ Others _____________

9.15 Water supply revenue in 2006
• Water sales (consumption charges, connection, etc): Rs. _____________
• Other revenues (materials sales, construction, etc.): Rs. _____________
• Subsidies/grants (government and other sources): Rs. _____________

9.16 Year end accounts receivable (water billing & all other outstanding invoices):
Rs. _____________

9.17 Water supply O & M expenses in 2006:
• Purchase of Bulk Supply (raw water or treated water) Rs. _____________
• Personnel Rs. _____________
• Power/Fuel Rs. _____________
• Chemicals and materials Rs. _____________
• Repair and maintenance Rs. _____________
• Transport Rs. _____________
• Depreciation Rs. _____________
• Other (Identify) _____________________________ Rs. _____________

Total O&M Cost Rs. _____________
The cost of contracted services (cost of services provided by private firms) may be placed under Other.

9.18 Total debt service (interest and principal) in 2006: Rs. _____________

9.19 Annual capital development expenses in 2006: Rs. _____________

9.20 Total Capital Expenditure in the last 5 years: Rs. _____________

Funded by: ___ internally generated reserves _____ %
___ government grant _____ %
___ government loan _____ %
___ commercial loan _____ %
___ other ________________________ _____ %

Total: 100 %

9.21 Gross fixed asset value including works in progress: Rs. _____________
TARIFF STRUCTURE

10.0 Please submit a copy of the tariff structure/rates used in 2006.

11.0 What data/information on water supply services are reported or disclosed by the ULB to the general public? Please enumerate/indicate __

__

PLEASE FORWARD COMPLETED QUESTIONNAIRE PLUS:

1) Copy of latest annual report
2) Copy of current Tariff Structure *

* Give details of when it was approved or became effective

BY COURIER SERVICE OR MAIL TO:

Mr. S. Krishnamurthy
Benchmarking Coordinator
Mailing Address in India

This questionnaire may also be sent:

a) by fax to Fax No. xxx xxxx, or
b) as an attachment by e-mail to: sk.murthy@imacs.in with copy to satyakn@iitm.ac.in and cyniguez@info.com.ph. (You may request for electronic copies of the questionnaire and guide.)

This Questionnaire was completed by:

Name : _____________________________
Designation : _____________________________
Address : _____________________________
Telephone : _____________________________
Fax : _____________________________
Mobile phone : _____________________________
E-mail : _____________________________

Appendix 1
APPENDIX 2

SUGGESTED EVALUATION CRITERIA FOR UTILITIES

<table>
<thead>
<tr>
<th>Category</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumer Satisfaction</td>
<td>40%</td>
</tr>
<tr>
<td>Coverage</td>
<td>10%</td>
</tr>
<tr>
<td>Water Availability</td>
<td>10%</td>
</tr>
<tr>
<td>Service Level</td>
<td>10%</td>
</tr>
<tr>
<td>New Connection Fee</td>
<td>10%</td>
</tr>
<tr>
<td>Water Resources Management</td>
<td>20%</td>
</tr>
<tr>
<td>Water Production/Population</td>
<td>5%</td>
</tr>
<tr>
<td>UFW/Metering</td>
<td>10%</td>
</tr>
<tr>
<td>Consumption</td>
<td>5%</td>
</tr>
<tr>
<td>Financial Resource Management</td>
<td>20%</td>
</tr>
<tr>
<td>Grant Financing</td>
<td>5%</td>
</tr>
<tr>
<td>Operating Ratio</td>
<td>10%</td>
</tr>
<tr>
<td>Accounts Receivable</td>
<td>5%</td>
</tr>
<tr>
<td>Human Resource Management</td>
<td>10%</td>
</tr>
<tr>
<td>Staff/1,000 Connections</td>
<td>5%</td>
</tr>
<tr>
<td>Management Salaries</td>
<td>5%</td>
</tr>
<tr>
<td>Accountability</td>
<td>10%</td>
</tr>
<tr>
<td>Annual Report</td>
<td>10%</td>
</tr>
</tbody>
</table>

Notes

Coverage (House Connections)

- 100%: 10%
- >50%: 5%
- <50%: 0%

Water Availability

- 24 hours: 10%
- >12 hours: 5%
- <12 hours: 0%

Service Level

- (a) No public Taps: 5%
- Public Taps: 0%
- (b) 100-200 l/c/d: 5%
- <100 l/c/d or >200 l/c/d: 0%
New Connection Fee

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reasonable Cost</td>
<td>5%</td>
</tr>
<tr>
<td>High Cost</td>
<td>0%</td>
</tr>
<tr>
<td>Installments to Pay</td>
<td>5%</td>
</tr>
<tr>
<td>Total Fee upfront</td>
<td>0%</td>
</tr>
</tbody>
</table>

Water Production/Population

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.5 m³/day/person</td>
<td>5%</td>
</tr>
<tr>
<td>>0.5 m³/day/person</td>
<td>0%</td>
</tr>
</tbody>
</table>

UFW/Metering

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Metering</td>
<td>5%</td>
</tr>
<tr>
<td>Partial Metering</td>
<td>0%</td>
</tr>
<tr>
<td>UFW < 25%</td>
<td>5%</td>
</tr>
<tr>
<td>UFW > 25%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Consumption

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><200 l/c/d</td>
<td>5%</td>
</tr>
<tr>
<td>>200 l/c/d</td>
<td>0%</td>
</tr>
</tbody>
</table>

Grant Financing

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nil</td>
<td>5%</td>
</tr>
<tr>
<td>Any</td>
<td>0%</td>
</tr>
</tbody>
</table>

Operating Ratio

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><0.75</td>
<td>10%</td>
</tr>
<tr>
<td>0.75 - 1.00</td>
<td>5%</td>
</tr>
<tr>
<td>> 1.00</td>
<td>0%</td>
</tr>
</tbody>
</table>

Accounts Receivable

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><3 months</td>
<td>5%</td>
</tr>
<tr>
<td>>3 months</td>
<td>0%</td>
</tr>
</tbody>
</table>

Staff/1,000 Connections

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td><10</td>
<td>5%</td>
</tr>
<tr>
<td>>10</td>
<td>0%</td>
</tr>
</tbody>
</table>

Management Salaries

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above Government Level</td>
<td>5%</td>
</tr>
<tr>
<td>Government Level</td>
<td>0%</td>
</tr>
</tbody>
</table>

Accountability

<table>
<thead>
<tr>
<th>Description</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Report Available to Public</td>
<td>5%</td>
</tr>
<tr>
<td>Annual Report Unavailable</td>
<td>0%</td>
</tr>
<tr>
<td>Timely Report (within 12 months)</td>
<td>5%</td>
</tr>
<tr>
<td>Reporting after 12 months</td>
<td>0%</td>
</tr>
</tbody>
</table>

During the Results Dissemination Workshop, the participating utilities agreed on the following:

1. Reasonable connection fee: Rs2,500
2. Government level salary: Rs30,000/month
2007 Benchmarking and Data Book of Water Utilities in India

Benchmarking is an effective tool to improve performance. The 2007 Benchmarking and Data Book of Water Utilities in India provides information on water utilities in 20 cities of the Jawaharlal Nehru National Urban Renewal Mission (JNNURM). The analysis and profiles in this data book would be useful in identifying new JNNURM projects to improve water utility performance.

About the Ministry of Urban Development Government of India

In the federal structure of the Indian polity, matters pertaining to housing and urban development have been assigned by the Constitution of India to the state governments. The Constitution (74th Amendment) Act has further cast the responsibility of devolving more functions, finances, and functionaries on urban local bodies to the states. The Ministry of Urban Development, Government of India, is the apex authority at the national level to formulate policies; sponsor and support programs; coordinate the activities of various central ministries, state governments, and other nodal authority; and monitor the programs concerning all urban development and housing issues in the country.

Recognizing the importance of benchmarking the water services, the Ministry is encouraging utilities to mainstream benchmarking activities in their operations. This exercise should lead to cities institutionalizing this process and making it a part of their annual business planning to make it sustainable in the long run.

This data book will help planners and policy makers review and monitor the improvement in water utilities with reference to benchmarks and achieve the targets envisaged by the planners within the time frame.

About the Asian Development Bank

ADB aims to improve the welfare of the people in the Asia and Pacific region, particularly the nearly 1.9 billion who live on less than $2 a day. Despite many success stories, the region remains home to two thirds of the world’s poor. ADB is a multilateral development finance institution owned by 67 members, 48 from the region and 19 from other parts of the globe. ADB’s vision is a region free of poverty. Its mission is to help its developing member countries reduce poverty and improve their quality of life.

ADB’s main instruments for helping its developing member countries are policy dialogue, loans, equity investments, guarantees, grants, and technical assistance.

ADB’s headquarters is in Manila. It has 26 offices around the world and more than 2,000 employees from over 50 countries.